

i

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
 Version: 2.11

ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Part II

ECHONET Communication Middleware Specifications

ii

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
 Version: 2.11

ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Revision record

Unless otherwise stated, all versions are upward compatible.

･ Version 1.0 March 18th 2000 released Open to consortium members
 July 2000 Open to the public
･ Version 1.01 May 23rd 2001 Open to the public
･ Version 2.00 August 7th 2001 Open to consortium members

The following table-of-contents entries were revised:

 Revised entries Revision/addition
1 1.2 The description of a registered trademark used in a

figure was added.

2 4.2 A message format was added for the introduction of
the secure communication function.

3 4.2.1 An EHD stipulation was added for the introduction of
the secure communication function.

4 4.2.6 Specifications for the AV-related device class group
were added.

5 4.2.6, Table 4.3 Corrections were made to achieve agreement with
the APPENDIX.

6 7.4 An explanation of the address conversion process
was added.

7 7.4.1, 7.5.1, 9.11.5 The descriptions were changed because the power
line A and power line B methods were integrated into
a single method.

8 9.2.3 An explanation of the status change announcement
was added.

9 9.3.5, 9.10.2, 9.12.2 Explanations of property maps were added.

iii

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
 Version: 2.11

ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

･ Version 2.01 December 19th, 2001 Open to consortium members
 Typographical errors in Version 2.00 were corrected.
･ Version 2.10 Preview December 28th, 2001 Open to consortium members

The following table-of-contents entries were revised:

 Revised entries Revision/addition
1 4.2 Specifications for frame formats for secure messages,

compound messages, and arbitrary messages were
added.

2 4.2.11 The section on the compound ECHONET service was
added in conjunction with compound message format
stipulation.

3 4.2.12 The section on the processing target property counter
was added in conjunction with compound message
format stipulation.

4 4.2.13 The section on the property data counter was added
in conjunction with compound message format
stipulation.

5 9.11.1 The version data property was added to the node
profile class.

6 Chapter 10 ECHONET secure communication specifications were
added.

iv

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
 Version: 2.11

ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

･ Version 2.10 Draft February 15th, 2002 Open to consortium members

The following table-of-contents entries were revised:

 Revised entries Revision/addition
1 4.2.1 - Descriptions were corrected.

2 Chapter 8 - The ECHONET Communications Processing Block
state transitions were revised. The descriptions of
the Protocol Difference Absorption Processing
Block state transitions were deleted.

3 4.2.11 - The description of the compound message service
(CpESV) was corrected.

4 Chapter 5 - A router startup sequence was added to ensure
that routing is partly achievable at a warm start.

5 4.2.6 - The secure communication access property setup
class group was added.

- The secure communication common key setup
node was added to the 0x05
management/control-related device class group
(0x05).

6 6.7.1 - A node startup process was added.

7 9.3.1 - The specification version data property was added
to the device object super class.

8 9.9.1 - Detailed specifications for the secure
communication common key setup node class
were added.

9 9.11.1 - The version data property code was added.

- The secure communication common key setup
(User Key) property was added.

- The secure communication common key setup
(Service Provider Key) property was added.

- The secure communication common key
switchover (User Key) property was added.

- The secure communication common key
switchover (Service Provider Key) property was
added.

10 9.11.2 - The router attribute was added as an item to the
registration request router data property for the
router profile class.

- The master router data property was added.

11 9.13, 9.14, 9.15, 9.16 - Explanations of the communication definition object
were added.

12 9.17 - The secure communication access property setup
class group was stipulated.

v

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
 Version: 2.11

ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

･ Version 2.10 March 7th, 2002 Open to consortium members

The following table-of-contents entries were revised:

 Revised entries Revision/addition
1 1.1 - The descriptions of EHD b6 and b7 were revised

(page 1-1).

2 3.4 - A description of trigger setup was added.

3 4.2.1 - The erroneous description of b7 in Fig. 4.2 was
corrected.

4 4.2.2 - The description in Fig. 4.4 was revised.

5 4.2.5 - The b2-b5 descriptions were deleted from the note
in Fig. 4.6.

6 4.2.6 - The "o" mark was added to the Remarks column
for the secure communication common key setup
node in Table 4.7.

7 4.2.7 - The erroneous description of b7 in Fig. 4.7 was
corrected.

- The contents of Note 1) for Table 4.9 were revised.

8 4.2.8 - The erroneous descriptions of b6 and b7 in Fig.
4.8-1 were corrected.

- Descriptions were revised.

9 4.2.11 - The description of the compound message service
(CpESV) was revised.

- Descriptions were revised.

10 5.2.2 - Erroneous descriptions were corrected.

11 5.4.3 - Descriptions were revised.

12 5.4.3, 5.4.4 - The "ECHONET router" portion of the title was
changed to "normal router".

13 7.1 - Descriptions were revised.

14 7.7 - Descriptions were revised.

15 8.2 - Descriptions were revised.

- The descriptions in Fig. 8.1 were revised.

- The descriptions in Table 8.1 were revised.

16 9.1 - Descriptions were revised.

17 9.3.3 - Descriptions were revised.

vi

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
 Version: 2.11

ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

• Version 2.11 April 26th 2002 Open to consortium members
 The following table-of-contents entries were revised:

 Revised entry Revision/addition
1 4.2, Fig. 4.1-2 - Explanation was added in relation to the EDT maximum

value during secure communication.

2 Chapter 4 - Figure numbers for Fig. 4.7 and succeeding figures were
corrected.

3 4.2.6 Tables
4.3,4.4,4.7,4.8

Revision of existing explanation.

4 4.2.8 (4) to (10) - Revision of existing explanation and addition of explanation.
5 5.3, Figs. 5.7, 5.8-1

and 5.8-2
- Numbers in figures were corrected.

6 5.4, Figs.
5.9,5.10-1,5.10-2,5.1
3,5.14,5.16,5.17

- Numbers in figures were corrected.

7 5.4, Tables 5.1 and
5.2

- Table numbers were corrected.

8 5.4, Fig. 5.13 - Messages (5) and (6) were added.
9 5.4, Figs. 5.13, 5.14

and 5.17
- Registration router property was corrected.

10 8.2, Table 8.1 - ClcReset was corrected to ClcStart.
11 9.2,9.3 Revision of existing explanation.
12 9.3.3 Revision of existing explanation and addition of explanation.
13 9.16, page 9-49

Condition 4
Revision of existing explanation.

14 9.17, page 9-53 and
page 9-55(5)

- Explanation was revised.

15 10.4.9, Fig. 10.8 - “Secure Key” was added.
16 10.4.11 - Explanation was revised.
17 10.9, Figs. 10.24

through 10.26
- Explanation was added and property codes were changed in
figures.

The specifications published by the ECHONET Consortium are established without regard to
industrial property rights (e.g., patent and utility model rights). In no event will the
ECHONET Consortium be responsible for industrial property rights to the contents of its
specifications.

The publisher of this specification is not authorized to license and/or exempt any third party
from responsibility for JAVA, IrDA, Bluetooth or HBS.
A party who intends to use JAVA, IrDA, Bluetooth or HBS should take action in being
licensed for above-mentioned specifications.

In no event will the publisher of this specification be liable to you for any damages arising out
of use of this specification.

vii

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
 Version: 2.11

ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Contents

Chapter1 Overview...2-2

1.1 Basic Concept..2-2
1.2 Positioning on Communications Layers..2-3

Chapter2 ECHONET Address..2-1

2.1 Basic Concept..2-1
2.2 ECHONET Address Structure..2-1
2.3 NetID...2-2
2.4 NodeID...2-2

Chapter3 ECHONET Objects...3-1

3.1 Basic Concept..3-1
3.2 Device Objects...3-2
3.3 Profile Objects ...3-3
3.4 Communication Definition Objects ...3-3
3.5 Service Objects..3-4
3.6 ECHONET Objects as Viewed from Application Software..3-4

Chapter4 Message Structure (Frame Format)...4-1

4.1 Basic Concept..4-1
4.2 Frame Format ..4-1

4.2.1 ECHONET Headers (EHD) ..4-6
4.2.2 Source/Destination ECHONET Address (SEA/DEA)..4-8
4.2.3 ECHONET Byte Counter (EBC)..4-10
4.2.4 ECHONET Data (EDATA)...4-10
4.2.5 Object Message Header (OHD) ..4-10
4.2.6 ECHONET Objects (EOJ)...4-11
4.2.7 ECHONET Property (EPC)...4-20
4.2.8 ECHONET Service (ESV)...4-21
4.2.9 ECHONET Property Value Data (EDT)..4-40
4.2.10 ECHONET Data Counter (EDC)..4-40
4.2.11 Compound ECHONET Service (CpESV) ..4-41
4.2.12 Processing Target Property Counter(OPC)...4-53
4.2.13 Property Data Counter(PDC) ...4-53

Chapter5 Basic Sequences...5-1

viii

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
 Version: 2.11

ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.1 Basic Concept..5-1
5.2 Basic Sequences for Object Control...5-2

5.2.1 Basic Sequences for Object Control in General ..5-2
5.2.2 Basic Sequences for Service Content..5-5

5.3 Basic Sequence for ECHONET Node Startup...5-8
5.3.1 Basic Sequence for ECHONET Node Cold Start ..5-9
5.3.2 Basic Sequence for ECHONET Node Warm Start..5-10

5.4 Basic Sequence for ECHONET Router Startup ..5-12
5.4.1 Basic Sequence for Parent Router Cold Start ..5-14
5.4.2 Basic Sequence for Parent Router Warm Start..5-15
5.4.3 Basic Sequence for Normal Router Cold Start..5-18
5.4.4 Basic Sequence for Normal Router Warm Start..5-21

5.5 Basic Sequence for ECHONET Node Normal Operation...5-24
5.5.1 Basic Sequence for Detecting EA Duplication..5-24
5.5.2 Basic Sequence for Detecting Nodes with Bad Net IDs..5-25
5.5.3 Basic Sequence for Net ID Write Request Reception..5-26

Chapter6 ECHONET Communications Processing Block Processing Specifications......................................6-1

6.1 Basic Concept..6-1
6.2 Received Message Determination Processing Specifications..6-2
6.3 Routing Processing Specifications..6-3

6.3.1 Received Message Routing Processing Specifications..6-3
6.3.2 Send Message Routing Processing Specifications..6-3

6.4 Object Processing Specifications..6-5
6.4.1 Object Processing (1)...6-5
6.4.2 Object Processing (2)...6-6
6.4.3 Object Processing (3)...6-6

6.5 Basic API Processing..6-7
6.6 Send Message Creation/Management Processing...6-7
6.7 Startup Processing...6-7

6.7.1 Node Startup Processing...6-8
6.8 Description of Processing Functions..6-9

Chapter7 Protocol Difference Absorption Processing Block Processing Specifications7-1

7.1 Basic Concept..7-1
7.2 Message Receipt/Assembly Processing..7-2

7.2.1 Message Receipt/Assembly Processing (1)...7-2
7.2.2 Message Receipt/Assembly Processing (2)...7-2

7.3 Message Splitting/Transmission Processing...7-3
7.3.1 Message Splitting/Transmission Processing (1)..7-3
7.3.2 Message Splitting/Transmission Processing (2)..7-3

ix

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
 Version: 2.11

ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

7.4 Address Conversion Processing..7-4
7.4.1 Address Conversion Specifications for Power Line Communications Protocol7-4
7.4.2 Address Conversion Specifications for Low-power Wireless Protocol ..7-5
7.4.3 Address Conversion Specifications for Extended HBS Protocol...7-5
7.4.4 Address Conversion Specifications for IrDA Control Protocol..7-5
7.4.5 Address Conversion Specifications for LonTalk Protocol ..7-5

7.5 Communications Type Conversion Processing..7-6
7.5.1 Communications Type Conversion Specifications for Power Line Communications Protocol......7-6
7.5.2 Communications Type Conversion Specifications for Low-power Wireless Protocol7-6
7.5.3 Communications Type Conversion Specifications for Extended HBS Protocol...............................7-7
7.5.4 Communications Type Conversion Specifications for IrDA Control Protocol..................................7-7
7.5.5 Communications Type Conversion Specifications for LonTalk Protocol ..7-7

7.6 Common Lower-Layer Communications Interface Processing..7-8
7.7 Description of Processing Functions..7-9

Chapter8 ECHONET Communication Middleware State Transitions ..8-1

8.1 Basic Concept..8-1
8.2 State Transitions in ECHONET Communications Processing Block..8-2

Chapter9 ECHONET Objects: Detailed Specifications..9-1

9.1 Basic Concept..9-1
9.2 ECHONET Properties: Basic Specifications..9-2

9.2.1 ECHONET Property Value Data Types...9-2
9.2.2 ECHONET Property Value Range ...9-2
9.2.3 Required Class Properties...9-3
9.2.4 Array ..9-3

9.3 Device Object Super Class Specifications...9-5
9.3.1 Overview of Device Object Super Class Specifications..9-5
9.3.2 Operating Status Property...9-7
9.3.3 Installation Location Property ..9-7
9.3.4 Specification Version Information...9-9
9.3.5 Fault Status Property..9-9
9.3.6 Fault Content Property...9-9
9.3.7 Manufacturer Code Property..9-10
9.3.8 Place-of-Business Code Property..9-10
9.3.9 Product Code Property ..9-10
9.3.10 Serial Number Property...9-10
9.3.11 Date-of-Manufacture Property ...9-10
9.3.12 Property Map Property ..9-11

9.4 Sensor-related Device Class Group Objects: Detailed Specifications ..9-12
9.5 Air Conditioning-related Device Class Group Objects: Detailed Specifications..................................9-12

x

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
 Version: 2.11

ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.6 Housing/Equipment-related Device Class Group Objects: Detailed Specifications9-12
9.7 Cooking/Housework-related Device Class Group Objects: Detailed Specifications...........................9-12
9.8 Health-related Device Class Group Objects: Detailed Specifications...9-12
9.9 Management/Control-related Device Class Group Objects: Detailed Specifications..........................9-13

9.9.1 Detailed Specifications for Secure Communication Common Key Setup Node Class..................9-13
9.10 Profile Object Class Group Specifications..9-14

9.10.1 Overview of Profile Object Super Class Specifications ...9-14
9.10.2 Property Map...9-15

9.11 Profile Class Group Detailed Specifications...9-16
9.11.1 Node Profile Class Detailed Specifications ..9-17
9.11.2 Router Profile Class: Detailed Specifications...9-26
9.11.3 ECHONET Communications Processing Block Profile Class: Detailed Specifications..............9-29
9.11.4 Protocol Difference Absorption Processing Block Profile Class: Detailed Specifications9-31
9.11.5 Lower-layer Communications Software Profile Class: Detailed Specifications9-33

9.12 Communications Definition Class Group Specifications...9-36
9.12.1 Overview of Communications Definition Object Super Class Specifications................................9-37
9.12.2 Property Map...9-37

9.13 Specifications for Status Notification Method Stipulation Communications Definition Class Group9-38
9.14 Specifications for Set Control Reception Method Stipulation Communications Definition Class
Group 9-41
9.15 Specifications for Linkage (Action) Setting Communications Definition Class Group......................9-44
9.16 Specifications for Linkage (Trigger) Setting Communications Definition Class Group.....................9-50
9.17 Specifications for Secure Communication Access Property Setup Class Group..................................9-55

Chapter10 ECHONET Security Communication Specification...10-1

10.1 ECHONET Security Problems...10-1
10.2 ECHONET Security Policy...10-1
10.3 Positioning of ECHONET in Protocol Stack..10-2
10.4 Configuration of Secure Communication Messages in ECHONET..10-3

10.4.1 ECHONET Secure Message Format...10-3
10.4.2 ECHONET Header (EHD)...10-3
10.4.3 ECHONET byte Counter (EBC)..10-3
10.4.4 ECHONET Secure Header (SHD)..10-4
10.4.5 Secure Key Header (SKH)..10-5
10.4.6 Maker Key Index (MKI)..10-7
10.4.7 Authentication Header (AHD)..10-8
10.4.8 Sequence Number Field (SNF)...10-8
10.4.9 Message Authentication Signature (MAS)...10-9
10.4.10 Plain Text ECHONET Data Part Byte Counter (PBC) ... 10-11
10.4.11 Plain Text ECHONET Data (PEDATA).. 10-11
10.4.12 Block Check Code (BCC).. 10-11

xi

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
 Version: 2.11

ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.4.13 Padding (PDG)... 10-11
10.5 Enciphering ...10-12

10.5.1 Common Key Block Enciphering...10-12
10.6 Authentication Sequence...10-13

10.6.1 Authentication Sequence ..10-13
10.7 Management of Shared Keys for Secure Communication..10-18

10.7.1 Detailed Specifications of Common Key Setting Class for Secure Communication......................10-18
10.7.2 Methods to Establish Shared Keys for Secure Communication...10-18
10.7.3 Common Key (User Key) Setting Sequence for Secure Communication..10-19
10.7.4 Common Key (Service Provider Key) Setting Sequence for Secure Communication...................10-22
10.7.5 Setting of Common Key (Maker Key) for Secure Communication..10-25
10.7.6 Common Key Distribution System...10-26
10.7.7 Synchronous Updating System for Common Key...10-29
10.7.8 Avoiding Omission of Devices Without Power When Updating Common Key............................10-30

10.8 Node Profile Property Stipulation for ECHONET Secure Communication..10-32
10.9 Access Limitation...10-32
10.10 Security Communication Access Property Setting Class Group..10-37
Supplement 1 References...i
Supplement 2 Property Map Description Format... ii
Supplement 3 All Router Data Description Format.. iii
Supplement 4 Instance List Description Format.. iv
Supplement 5 Class List Description Format.. v

2-2

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
1 Overview

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Chapter1 Overview

1.1 Basic Concept

The ECHONET Communication Middleware specifications indicated in this Part not only
concern the communication protocol but also include processing for the portion found between the
application software block and the Lower-layer Communications Software block shown in the next
section (Section 1.2, “Positioning in Communication Layer”). The communication protocol
specifications are described in Chapters 2 through 5.

The ECHONET Communication Middleware specifications were designed primarily to enable
the concealment of Lower-Layer Transmission Medium differences from the perspective of the
application layer. Other issues relating to communication protocol specifications for the
communication middleware block are listed below.

(1) Use of ET-2101*1 resources
・ For EHD (ECHONET Header) specifications, the header codes (HD) specified in ET-2101 were

used. In ET-2101, the b7 and b6 values are defined as fixed values for future expansion. In EHD,
however, these values are defined differently, with the value b7 defined as a fixed value for future
expansion.

(2) Use of JEM-1439*2 resources
・ The specific command contents (device types, specific codes, etc.) of JEM-1439 were used for

specific device object type and code specifications.

Notes: 1) A home network standard published in Sep. 1988 by the Electronic Industries Association of
Japan. For detailed information on this standard, see References 1–3 in Appendix 1.

 2) A home network (especially home equipment) standard published in Aug. 1988 by the
Electronic Industries Association of Japan. For detailed information on this standard, see
Reference 4 in Appendix 1.

2-3

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
1 Overview

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

1.2 Positioning on Communications Layers

Communication Middleware is positioned between Application Software and Lower-Layer
Communication Software. Specifications are provided in this Part. In Fig. 1.1, the shaded area shows
the Communication Middleware block to be specified.

Transmission Medium

Power
Line

Communication
Middleware

Application Software

Device
Object

Service
Object

Service
API

Protocol Difference Absorption Processing Block

ECHONET Communications
Processing Block

Common Lower-layer Communications Interface

Basic APIBasic API

Lower-layer
Communication Software

Low-power
Wireless

Extended
HBS

IrDA
Control LonTalk

A
Individual Lower-layer

Communication InterfaceB C D E

Power
Line

Low-power
wireless

Twisted-
pair cable Infrared Low-power

wireless

Service
Middleware

LonTalk is a registered trademark of Echelon Corporation in the U.S. and other
countries. All other trademarks are the property of their respective owners.

Fig. 1.1 Positioning on Communication Middleware

 2-1

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
2 ECHONET Address

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Chapter2 ECHONET Address

2.1 Basic Concept

The ECHONET Address was introduced to conceal differences in Lower-Layer Transmission
Medium from the ECHONET Communications Processing Block and the Application Software. The
basic requirement for the address is that it uniquely identifies an ECHONET Node. The ECHONET
Address is a logical address defined separately from the MAC address unique to each given
transmission media.

2.2 ECHONET Address Structure

An ECHONET Address consists of (1) an address (hereafter referred to as a Node ID) determined

based on an address (hereafter referred to as a MAC Address) that enables communication in Layer 2
of the transmission medium and (2) an address (hereafter referred to as a Net ID) that specifies the
Subnet.

Specifically, it consists of a Net ID and a Node ID that correspond uniquely to the MAC address.
Both are shown in the Fig. below. The Node ID is logically assigned so as to be unique within the
subnet.

The procedure for deciding an ECHONET Address is specified in Chapter 5.
When the subnet changes due to a change in location of the ECHONET Node, its ECHONET

address also changes. Specifying the ECHONET Node in an ECHONET Domain before and after
movement can be performed using the device-unique data held in the Device Profile Object of each
device (see Section 3.3, “Profile Objects”).

Net ID (1 Byte) Node ID (1 Byte)

ECHONET Address

 2-2

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
2 ECHONET Address

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

2.3 NetID

The NetID signifies a Subnet identifier. The NetID of each ECHONET Node is set based on
Subnet information held in ECHONET Routers. Until the NetID of an ECHONET node is set by an
ECHONET Router, the Net ID is set to “0x00”, indicating “Net ID not specified,” and the node can
communicate only within the subnet to which the node belongs. See Chapter 5 for the NetID setting
process.

Table 2.1 NetID Codes
 NetID (HEX) means Remarks
1 0x00 NetID not specified
2 0x01 to 0x8F Automatically assigned codes By ECHONET Router
3 0x90 to 0xFF Codes available to user (manually

assigned codes)
Used, for example, when a
system manager for an
apartment complex or building
is present.

2.4 NodeID

NodeID signifies an identifier used to identify uniquely an ECHONET Node within a Subnet. The
NodeID is converted from a MAC Address such that it is unique within the Subnet. Each type of
Lower-Layer Communication Software has its own conversion specifications (see Section 7.4
Address Conversion Processing).

 3-1

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
3 ECHONET Objects

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Chapter3 ECHONET Objects

3.1 Basic Concept

The ECHONET Objects specified in this section were introduced with two objectives: first,
compartmentalization of functions of devices connected to the ECHONET network; and second,
modelization of communication between devices to enable application software developers whenever
possible to utilize ECHONET communication without concern for detailed specifications. The
ECHONET Objects are processed in the ECHONET Communications Processing Block. Control
content exchanged in communications can be classified into four types: those relating to functions
unique to each device; those relating to data profiling something other than the functions unique to
each device; those relating to object communication operations; and those relating to service
middleware functions. In ECHONET, all of these are specified as objects, and control and data
exchange were achieved to enable their manipulation. The ECHONET specifies four types of
ECHONET Objects:

(1) Device Objects
(2) Profile Objects
(3) Communication Definition Objects
(4) Service Objects

Each ECHONET Object has properties. The various unique functions possessed by an

ECHONET Node are represented as ECHONET Properties. Reading or writing the ECHONET
Properties of the ECHONET Object in the relevant ECHONET Node operates the device.

ECHONET Objects are defined as the following specifications: object type (codes will be
specified in the next section as EOJ); the properties possessed by each object (codes will be specified
in the next section as EPC); and the services for those properties (codes will be specified in the next
section as ESV). The following issues were taken into account when formulating the detailed
specifications:

・ It was assumed that each ECHONET Node will have more than one Device Object of the same

type (e.g., two Human Detection Sensor objects in the same node), and that identification can be
performed by stipulating a specific code (see detailed specifications for EOJ in following section).
・ It was assumed that the various communications-related settings and status confirmations could be

carried out by application software as ECHONET Object operations.

 3-2

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
3 ECHONET Objects

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

3.2 Device Objects

Device Object data resides in the ECHONET Communication Middleware, but the device

mechanical functions themselves reside in the Application Software block. The ECHONET
Communication Middleware manages instance property data and manages and processes operations
related to communication for properties. In these specifications, the term “Device Objects” is used to
refer to all objects, such as Air Conditioner objects and Refrigerator objects. The object definitions for
each Device Object are specified (see APPENDIX).

In a single ECHONET Device, one or more Device Objects is defined. Each Device Object
defines properties to be used in each class and services corresponding to the properties. Fig. 3.1 below
demonstrates this relationship using a concrete example.

Fig. 3.1 Device Object Example

For class definitions for the Device Objects (Air Conditioner, etc.) (i.e., property configurations and
other specific definitions and code specifications), see Chapter 9, “ECHONET Objects: Detailed
Specifications” and the APPENDIX. Other ECHONET Nodes seeking to control an ECHONET
Node via ECHONET, control its functions and confirm its status do so by manipulating (i.e., by
reading/writing) these Device Objects.

……

Human Detection Sensor class

 properties Content
 sensor動作状態ＯＮ/OFF
検知レベル レベル1/..
 ・
人体検知状態 有/無
故障発生状態 発生有/No

 class Instance (2)

Air Conditioner class

Operation status ON/OFF
Operating mode Auto/cool
 Heat/…
Temp setting Temp setting
 ・
 ・
Malfunction Yes/No

Properties Content

Human Detection Sensor class

Properties Content
Operation status ON/OFF
Detection level Level 1/..
 ・
Human detection Yes/No
Malfunction Yes/No

Device Objects

Instance (1)
Instance (1)

 3-3

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
3 ECHONET Objects

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

3.3 Profile Objects

ECHONET Node Profile data, such as ECHONET Node operating state, manufacturer
information, and implemented Device Objects list, are specified to enable manipulation (read/write)
by application software and other ECHONET Nodes. In these specifications, the term “Profile
Objects” will be used as a blanket term to refer to various ECHONET Profile Classes, such as Node
Profile Object, Router Profile Object, and Protocol Difference Absorption Processing Block Profile
Object, with detailed specifications to be provided individually (see Chapter 9). Like the Device
Objects shown in Fig. 3.1 on the preceding page, Profile Objects define properties to be used in each
class and services corresponding to the content and properties thereof (see Chapter 9, “ECHONET
Objects: Detailed Specifications”). Operations on the various profiles of an ECHONET Node are
performed by manipulating (reading/writing) these profile objects.

3.4 Communication Definition Objects

Communication Definition Objects is the blanket term used to refer to all objects specified with the
objective of manipulating the communications-based operations of Device Objects, Profile Objects,
and Service Objects. Specifications will be provided for each class of Device Objects and Profile
Objects and service objects (e.g., Air Conditioner Communication Definition Object and Node Profile
Communications Definition Object), which will be described later. It is possible to control
communications operations when manipulating the properties of individual Device Objects, Profile
Objects, and Service Objects by manipulating (i.e., by reading/writing) these Communications
Definition Objects. Operations specified by the Communications Definition Objects are shown below.
Detailed specifications will be presented in Chapter 9.

 (1) Status notification method setting
・Indicates whether or not to notify upon a change in property content status
・Indicates whether or not to notify property content status periodically (includes notify time
elapse setting)
・Indicates recipient of notification (either broadcast or to specified ECHONET Nodes)

 (2) Control reception method setting
・Indicates sender ECHONET Node to receive “Set” service

 (3) Action information setting
・Indicates action information for equipment linkage

 (4) Trigger information setting
・Indicates trigger information for equipment linkage

 3-4

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
3 ECHONET Objects

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

3.5 Service Objects

Functions to be disclosed to the network based on Service Middleware functions are modeled, and
the class specifications are defined as Service Objects. They are provided to enable operation of
Service Middleware from other ECHONET Devices via the ECHONET network. Detailed
specifications are provided in Chapter 8.

3.6 ECHONET Objects as Viewed from Application Software

Control of ECHONET Objects from application software is performed using the Basic APIs
specified in Part IV. Here, control from application software using Basic APIs is described for the
main three cases listed below, with a focus on how the ECHONET Objects are perceived.

Case 1: Obtain other node status
Case 2: Control other node functions
Case 3: Notify other nodes of self-node status

This section shows only how ECHONET Objects are seen from the perspective of application

software and does not provide API processing specifications. For this, refer to the detailed
specifications in Part IV.

 3-5

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
3 ECHONET Objects

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

 (1) ECHONET Objects when obtaining other node status

The ECHONET standard provides two methods for obtaining the status of another node. These
methods are shown in Figs. 3.2-1 and 3.2-2. In the method shown in Fig. 3.2-1, when a request is
received from an application, an obtain status request is issued to objects in the specified other node
(Node B), with the results notified to the application. With this method, object data for the other node
need not be stored in the ECHONET Communication Middleware for the node (Node A in the Fig.)
making the request. In the second method, shown in Fig. 3.2-2, even when no request is received from
an application, the ECHONET Communication Middleware catches and holds notified status of
objects in other nodes in advance, and then returns them to an application when it requests.
In this method, objects copied to ECHONET Objects in other nodes actually exist within the
ECHONET Communication Middleware. In the former method, because the access is performed
from an application, a virtual copy of the ECHONET Objects in the other node exists in the
ECHONET Communication Middleware. In both cases, in order to set the desired ECHONET
Object instance via the Basic API, not only the ECHONET Object class code but also an instance
code and data specifying the node (ECHONET Address, etc.) are necessary. From the viewpoint of
the application, therefore, ECHONET Objects are seen in the relationship shown in Fig. 3.2-3 within
the ECHONET Communication Middleware.

 3-6

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
3 ECHONET Objects

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fig. 3.2-1

Fig. 3.2-2

Fig. 3.2-3

Node B Node A

Node C

ECHONET Communication Middleware ECHONET Communication Middleware

E_Obj

Basic API

Application Software

ECHONET Communication Middleware ECHONET Communication Middleware

Basic API Basic API

Application Software

Read status

Application Software

Read status

Application Software

Asynchronization of
read and status

acquisition timing

Synchronization of
read and status

acquisition timing

ECHONET Communication Middleware

Basic API

Application Software

Node A

Node B Node C

Node A

E_Obj

E_Obj
E_Obj

E_Obj E_Obj

E_Obj E_Obj
E_Obj E_Obj

Basic API

 3-7

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
3 ECHONET Objects

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(2) ECHONET Objects when controlling other node functions

ECHONET provides a method for controlling the functions of other nodes. This method is shown in
Fig. 3.2-4. Just as in Fig. 3.2-1, however, a request for control (property value setting) is issued to
objects in the specified other node (Node B), and the application is then notified of the results
(although in some cases the application is not notified). Basically, therefore, property data for objects
in the other node (Node B) need not be present in the ECHONET Communication Middleware for
the node (Node A) making the request. To indicate the desired ECHONET Object instance via the
Basic API, an ECHONET Address, an ECHONET Object class code, and its instance code are
required. From the viewpoint of the application, ECHONET Objects are seen in the relationship
shown by Node B in Fig. 3.2-5 within the ECHONET Communication Middleware.

Fig. 3.2-4

Fig. 3.2-5

Node B Node A

ECHONET Communication Middleware ECHONET Communication Middleware

E_Obj

Basic API

Application Software

Control request

Application Software

ECHONET Communication Middleware

Basic API

Application Software

Node B

Node A

E_Obj

E_Obj

E_Obj
E_Obj

Basic API

 3-8

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
3 ECHONET Objects

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(3) ECHONET Objects when notifying another node of self-node status
ECHONET provides two methods for notifying application software on another node of the status of
the self-node. These methods are shown in Fig. 3.2-6 and Fig. 3.2-7. In the method shown in Fig.
3.2-6, when a request is received from an application, the specified other node (Node B) is
immediately notified, and device status need not be stored as an object in the ECHONET
Communication Middleware for the node (Node A) announcing the status. In the second method,
shown in Fig. 3.2-7, upon receiving a request from an application, the ECHONET Communication
Middleware periodically notifies the property value to the other node using an asynchronous timing
that differs from the request from the application. Here, ECHONET Object data actually exists in the
ECHONET Communication Middleware. In the former method (Fig. 3.2.6), however, because
communication is stipulated by the application, a virtual copy of the ECHONET Objects exists in the
ECHONET Communication Middleware. In either case, from the viewpoint of the application, the
ECHONET objects of the self-node are seen as existing within the ECHONET Communication
Middleware (see Fig. 3.2-8).

Fig. 3.2-6

Node B Node A

ECHONET Communication Middleware ECHONET Communication Middleware

E_Obj

Basic API

Application software

Status setting

Application software

Setting and status
notification timing
are synchronous

Basic API

 3-9

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
3 ECHONET Objects

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fig. 3.2－7

Fig. 3.2－8

As is clear from the three cases shown above, the ECHONET Communication Middleware is viewed
by the application software as containing (and in some cases actually does contain) (1) a collection of
ECHONET objects of the self-node whose role is to disclose the functions of the self-node to other
nodes and to be controlled by other nodes; and (2) ECHONET objects at the node level whose role is
to control and obtain the status of the functions of other nodes. Here, the “Self-device” will be
specified as the unit for a collection of ECHONET object instances showing the functions of the
self-node. Only one such device exists in each piece of ECHONET Communication Middleware, but
there may be as many other devices as there are related other nodes.

Based on the above, Fig. 3.2-8 shows a typical ECHONET Communication Middleware object

Node C

ECHONET Communication Middleware ECHONET Communication Middleware

Basic API Basic API

Application software

Status setting

Application software

Setting and status
notification timing
are asynchronous

Node A

E_Obj

ECHONET Communication Middleware

Basic API

Application software

Node A

Node A

E_Obj

E_Obj
E_Obj

 3-10

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
3 ECHONET Objects

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

configuration for a system in which an air conditioner, ventilation fan, and human detection sensor are
connected as separate nodes via a network, seen from the perspective of the application software in the
air conditioner.

Fig. 3.2-9

Power動作状態 ＯＮ/ＯFF
 ・
 ・
故障発生状態 発生有/無

Air conditioner class

Operation status ON/OFF
Operating mode Auto/Cool
 Heat/….
Current set temp Temp setting
 ・
 ・
Malfunction status YES/NO

Properties Content

…

Ventilation fan class

Operation status ON/OFF
 ・
 ・
Malfunction status YES/NO

Properties Content

Self-device
(object group for disclosure of self-node functions)

Other device 2
(object group for control of other node functions)

…

…
ECHONET Communication Middleware

Other device n

Other device 1
(object group for control of other node functions)

…

Body detection sensor
[Instance 2]

Body detection sensor

Power status ON/OFF
 ・
 ・
Malfunction status YES/NO

Properties Content

[Instance 1]

[Instance 1] [Instance 1]

 4-1

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Chapter4 Message Structure (Frame Format)

4.1 Basic Concept

The ECHONET specifications were designed to enable the use of power line and wireless
protocols as transmission media. Normally, noise and phasing have a major impact on power line and
400MHz wireless used within the home. Moreover, slow transmission speeds discourage large data
transfers, and it is desirable to reduce the mounting load on simple devices. In light of this situation,
ECHONET specifies the frame format for the ECHONET Communication Middleware block to
minimize message size while fulfilling the requirements of the communications layer structure.

4.2 Frame Format

Figs. 4.1-1 and 4.1-2 show the content of the ECHONET Communication Middleware frame format.
Detailed specifications for each message component will be provided in the following pages.

 4-2

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(1) Message configuration for exchange between ECHONET Communications Processing Blocks
 In the ECHONET Communication Middleware Specifications, messages exchanged between

ECHONET Communications Processing Blocks are called ECHONET frames. ECHONET frames
are roughly divided into two types depending on the specified EHD: secure message format whose
EDATA section is enciphered (see Chapter 10) and plain message format whose EDATA section is
not enciphered. The secure message format and plain message format are subdivided into three
formats depending on the specified EHD (see Section 4.2.1). Therefore, the following six different
message formats are available for ECHONET frames:

1) Plain basic message format
 Insecure communication is performed so that one message is used to view or change the contents

of one property.
2) Plain compound message format
 Insecure communication is performed so that one message is used to view or change the contents

of two or more properties.
3) Plain arbitrary message format
 Insecure communication is performed so as to exchange information that complies with

vendor-unique specifications.
4) Secure basic message format
 Secure communication is performed so that one message is used to view or change the contents

of one property.
5) Secure compound message format
 Secure communication is performed so that one message is used to view or change the contents

of two or more properties.
6) Secure arbitrary message format
 Secure communication is performed so as to exchange information that complies with

vendor-unique specifications.

 Fig. 4.1-1 shows the ECHONET frame structure for the plain message format. Fig. 4.1-2 shows the
ECHONET frame structure for the secure message format.

 4-3

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fig. 4.1-1 ECHONET Frame for Plain Data Format

SEA DEA EBC EDATA

Format I (basic data format)

(ECHONET frame) EHD

SEOJ EPC ESV EDT DEOJ OHD

SEOJ
Cp

ESV OPC DEOJ OHD PDC EPC EDT ・・・PDC EPC EDT

Request 1

・・・

Request n
Size of

request 1
Size of

request n

OHD : object message header (1B)
SEOJ : specifies source ECHONET Object (3B)
DEOJ : specifies destination ECHONET Object (3B)
CpESV : compound ECHONET service (1B)
OPC : number of processed properties (1B)
PDC : property data counter (1B)
EPC : ECHONET property (1B)
EDT : property value data (max. 245 bytes)

Format II (compound data format)

Format III (multiple property
simultaneous control form at multiple
property simultaneous control format)

OHD : object message header (1B)
SEOJ : specifies source ECHONET Object (3B)
DEOJ : specifies destination ECHONET Object (3B)
EPC : ECHONET property (1B)
ESV : ECHONET service (1B)
EDT : property value data (Max. 247 bytes)

EHD : ECHONET message header (1B)
SEA : source ECHONET Address (2B)
DEA : destination ECHONET Address (2B)
EBC : EDATA area byte counter (1B)
EDATA : ECHONET data (max. 256 bytes)

 4-4

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fig. 4.1-2 ECHONET Frame for Secure Message Format

SEOJ EPC ESV EDT DEOJ OHD

SEOJ
Cp

ESV OPC DEOJ OHD PDC EPC EDT ・・・PDC EPC EDT

SHD PBC PEDATA

SEA DEA EBC EHD EDATA

BCC PDG

・・・

Note: Wavy-lined areas are to be enciphered (see Chapter 10).

(*1) When the basic encryption header format or the manufacturer key encryption header format is used, the maximum value is 235 bytes.

When the basic encryption/authentication header format or manufacturer key encryption /authentication header format is used, the maximum value is 223 bytes.

(*2) When the basic encryption header format or the manufacturer key encryption header format is used, the maximum value is 237 bytes.
 When the basic encryption/authentication header format or manufacturer key encryption /authentication header format is used, the maximum value is 225 bytes.

Format I (basic data format)

Request 1 Request n
Size of

request 1
Size of

request n

OHD : object message header (1B)
SEOJ : specifies source ECHONET Object (3B)
DEOJ : specifies destination ECHONET Object (3B)
CpESV : compound ECHONET service (1B)
OPC : number of processed properties (1B)
PDC : property data counter (1B)
EPC : ECHONET property (1B)
EDT : property value data (*1)

Format II (compound data format)

Format III (multiple property
simultaneous control form at multiple
property simultaneous control format)

OHD : object message header (1B)
SEOJ : specifies source ECHONET Object (3B)
DEOJ : specifies destination ECHONET Object (3B)
EPC : ECHONET property (1B)
ESV : ECHONET service (1B)
EDT : property value data (*2)

EHD : ECHONET message header (1B)
SEA : source ECHONET Address (2B)
DEA : destination ECHONET Address (2B)
EBC : EDATA area byte counter (1B)
EDATA : ECHONET data (max. 256 bytes)

 4-5

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(2) Message configuration for exchange between Protocol Difference Absorption Processing Blocks
 Messages exchanged between Protocol Difference Absorption Processing Blocks are called

ECHONET split frames. This message configuration absorbs the difference in message size to
achieve processing in the ECHONET Communications Processing Block that is independent of the
lower-layer communication software.

・ Relationship with upper-layer messages
The ECHONET split frame described above consists of an ECHONET frame that has been
split into messages that are no larger than the maximum processable size for Lower-layer
Communications Software. Each also contains header codes (EDC) for frame splitting,
assembly, and routing as well as address data for the source and destination.

・ Relationship with lower-layer messages
ECHONET split frames

Fig. 4.1-3 ECHONET Split Frames

SA: MAC address of source of messages between lower-layer communications software (dependent on lower-layer
communications software)
DA: MAC address of destination of messages between lower-layer communications software (dependent on lower-layer
communications software)
DATA area: Actual message to be exchanged between lower-layer communications software

N : Number of split frames (max. 18)
EDC (n) : ECHONET message counter (1 byte)
ESDATA (1)-(n): Message from EHD–EDATA (ECHONET frame) split into n parts. max 262 bytes.
SA/DA data : DA (recipient’s MAC address data) when sending message, SA (source’s MAC address data) when receiving message
 When sending, DA data is created from DEA value in ECHONET frame
 Includes broadcast specification data

SA DATA range DA

ESDATA EDC
 (m)

ESDATA (ｎ) EDC
(n)

SA/DA
data

・ ・ ・ ・

ECHONET frame (EHD–EDATA)

EDC
 (1)

EDC
 (2)

EDC
 (ｎ) ESDATA (1) ESDATA (2) ESDATA ・ ・ ・ ・

 SA/DA
data

 SA/DA
data

 SA/DA
data

 SA/DA
data

4-6

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

4.2.1 ECHONET Headers (EHD)

This section provides detailed specifications for the ECHONET Header (EHD) shown in Fig. 4.1-1
and Fig. 4.1-2.

Fig. 4.2 EHD Detailed Specifications

The combination of b1 and b0 specifies the message format for EDATA/PEDATA section. When
b1:b0 = 0:0, it indicates Message Format I (basic message format), which allows one message to
operate on one property of one object. When b1:b0 = 0:1, it indicates Message Format II (compound
message format), which allows one message to operate on two or more properties of one object.
When b1:b0 = 1:0, it indicates Message Format III (arbitrary message format), whose
EDATA/PEDATA section is in an arbitrary format.

Bit b2 indicates whether the EDATA section is enciphered or not. When b2 = 1, it means that the
EDATA section is enciphered. When b2 = 0, it means that the EDATA section is not enciphered.
Detailed information about enciphered and other secure messages is set forth in Chapter 10.

Bit b3 specifies whether the DEA (destination ECHONET address) shown in Fig. 4.1-1 and Fig.
4.1-2 is a broadcast address or an individual address. When b3 = 1, it indicates that a broadcast address
is stipulated by the DEA code. When b3 = 0, it indicates that an individual address is stipulated by the
DEA code. Broadcast address codes are discussed in the next section.

Bits b4, b5, and b6 constitute a routing hop counter, which can be manipulated only by ECHONET
Routers. When a message received at one subnet of an ECHONET Router is forwarded to another
subnet, the counter is incremented. For every transmission from an ordinary node, a hop count of 0 is
used. The relationship between b4, b5, and b6 and the hop count is shown in the table on the next page.
The number of hops can be set to a value between 0 and 7.

Secure message specification
 0: plain message; 1: secure message

Routing hop counter

１ ＊ ＊ ＊ ＃ ０ ☆ ☆
b7

DEA code type specification (individual/broadcast)
 0: Individual 1: Broadcast

Fixed

Note: When b7=0, b0 to b6 will be specified separately (reserved for future use).

EDATA/PEDATA configuration specification
 b1:b0=0:0 Message format I (basic message format)
 0:1 Message format II (compound message format)
 1:0 Message format III (arbitrary message format)
 1:1 Reserved for future use

b6 b5 b4 b3 b2 b1 b0

4-7

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

b6 b5 b4 Hop count (router passes)
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

4-8

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

4.2.2 Source/Destination ECHONET Address (SEA/DEA)

This section provides detailed specifications for the source ECHONET address (SEA) and
destination ECHONET address (DEA) shown in Fig. 4.1-1 and Fig. 4.1-2. Fig. 4.3 shows the
configuration of the source ECHONET address (SEA) and the destination ECHONET address
(DEA) prevailing when an individual address is stipulated by setting b3 of EHD to 0 (see Chapter 2
for details).

Fig. 4.3 Configuration of SEA and DEA When an Individual Address Is Specified

When b3 of EHD is set to 1 to specify a broadcast, the destination ECHONET address (DEA)
becomes a code indicating a broadcast message for specific ECHONET address group (including a
general broadcast). The DEA configuration in this case is shown in Fig. 4.4. The broadcast target
stipulation code is shown in Fig. 4.5-1 and Fig. 4.5-2.

Broadcast Type
Stipulation Code

Broadcast target stipulation code Remarks

0x00 Specifies the node groups to be targeted for a
broadcast within all subnets. For node group
selection, see Fig. 4.5.

An intra-domain broadcast. In all
subnets within a domain, a broadcast
is sent to the nodes stipulated by the
broadcast target stipulation code.

0x01 Specifies the node groups to be targeted for a
broadcast within the own subnet. For node group
selection, see Fig. 4.5.

An intra-own-subnet broadcast. In the
own subnet, a broadcast is sent to the
nodes stipulated by the broadcast
target stipulation code.

0x02 All nodes within the subnet having the Net ID code
stipulated by the "broadcast target stipulation code"
are targeted.

A general broadcast within a specified
subnet. A broadcast is sent to all
nodes within the subnet stipulated by
the broadcast target stipulation code.

0x03–0x7F Reserved for future use
0x80–0xFF Open to user Used when a system manager will

manage the system in a collective
housing unit or small office building.

Fig. 4.4 DEA (Broadcast-Stipulated) Address Configuration

Net ID (1 byte) Node ID (1 byte)

1st Byte 2nd Byte

Broadcast type
stipulation code

Broadcast nodes
stipulation code

1st Byte 2nd Byte

4-9

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fig. 4.5-1 Broadcast Target Stipulation Code

 0 8 4 C 2 A 6 E 1 9 5 D 3 B 7 F
0
8

Group 0

4
C

Group 1

2
A

Group 2

6
E

Group 3

1
9

Group 4

5
D

Group 5

3
B

Group 6

7
F

Group 7

Fig. 4.5-2 Node Group Stipulation Bit Specifications

Note: The node IDs of the nodes belonging to node groups 0 to 7 are as indicated below.
For example, a node whose node ID is 0xA2 belongs to group 2.

上位
lower-l

☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

Broadcast to node group 0 YES/NO

Broadcast to node group 1 YES/NO

Broadcast to node group 2 YES/NO

Broadcast to node group 3 YES/NO

Broadcast to node group 4 YES/NO

Broadcast to node group 5 YES/NO

Broadcast to node group 6 YES/NO

Broadcast to node group 7 YES/NO

=1: YES
 0: NO

Broadcast target stipulation code (2nd byte of DEA for broadcast)
b7 b6 b5 b4 b3 b2 b1 b0

4-10

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

4.2.3 ECHONET Byte Counter (EBC)

Indicates the size of the ECHONET data region (EDATA region) shown in Figs. 4.1-1 and 4.1-2.
The size is variable in 1 byte increments. The acceptable EDATA region size ranges from 6 to 256
bytes (0x06 to 0xFF; 0x00 = 256). The lower limit is 6 bytes, which indicates that a message consists
of at least 6 bytes. The reason is that either the SEOJ or DEOJ needs to be specified with the EPC to
ESV options specified for a plain message. A 6-byte message can be a message requesting an ESV
with the DEOJ specified or a message carrying a "response of processing impossible" for ESV with
the SEOJ specified.

4.2.4 ECHONET Data (EDATA)

The DATA region for messages exchanged by ECHONET Communication Middleware.
Maximum size: 256 bytes.

4.2.5 Object Message Header (OHD)

This section provides detailed specifications for the Object Message Header (OHD) shown in Figs.
4.1-1 and 4.1-2. The state in which b1 and b0 are both 0 will never occur.

Fig. 4.6 OHD Detailed Specifications

Notes: When b6 and b7 have values other than b6=0 and b7=1, b0–b5 will have different meanings.
The meanings of bits b0 to b5 when b6 and b7 have values other than b6 = 0 and b7 =1 are to be stipulated in the
future (reserved for future use).

１ ０ ０ ０ ０ ０ ☆ ☆

Source object stipulation 1:YES 0:NO

All “0” fixed

Fixed (reserved for future use)

Destination object stipulation 1: YES 0: NO

b7 b6 b5 b4 b3 b2 b1 b0

4-11

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

4.2.6 ECHONET Objects (EOJ)

This section provides detailed specifications for the source ECHONET object (SEOJ) code and
destination ECHONET object (DEOJ) code shown in Figs. 4.1-1 and 4.1-2.

Fig. 4.7 EOJ Detailed Specifications

ECHONET objects are described using the format [X1.X2] and [X3], with these formats to be
specified as shown below. (However, “.” is used only for descriptive purposes and does not mean a
specific code.) The object class is designated by the combination of X1 and X2, while X3 shows the
class instance. A single ECHONET node may contain more than one instance of the same class, in
which case X3 is used to identify each one.

The specific items in Tables 4.1-4.8 were specified based on JEM-1439. Detailed specifications for
the objects shown here will be developed over time, and during this phase specifications for the
objects themselves (i.e., present/not present) will be further reviewed. Objects for which detailed
specifications (including property configurations) have already been formulated will be indicated with
a ○ in the Remarks column, with the detailed specifications to be provided in the APPENDIX.

The instance code 0x00 is regarded as a special code (code for specifying all instances). When a
DEOJ for which this specified code is specified is received, it is handled as a code specifying a
broadcast to all instances of a specified class.

・X1 : class group code 0x00-0x7F. For details, refer to Table 4.1.
・X2 : class code 0x00-0xFF. For detailed examples, refer to Tables 4.2–4.8.
・X3 : instance code 0x00-0xFF.

Identifier code used when more than one of the same class specified by
[X1.X2] exists within the same node. However, 0x00 is used as general
broadcast to all instances of class specified with [X1.X2].

０ ＃ ＃ ＃ ＃ ＃ ＃ ＃
b7 b6 b5 b4 b3 b2 b1 b0

X3: instance code

X1: class group code
0: fixed

☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

1st Byte 2nd Byte

＊ ＊ ＊ ＊ ＊ ＊ ＊ ＊

3rd Byte

X2: class code

Note: The meanings of the bits when b7 of the 1st byte is 1 are to be stipulated in the future (reserved for future use).

b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0

4-12

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 4.1 List of Class Group Codes
 CLASS GROUP

CODE GROUP NAME REMARKS

0x00 Sensor-related device class group
0x01 Air conditioner-related device class group
0x02 Housing/facility-related device class group Includes lighting
0x03 Cooking/housework-related device class group
0x04 Health-related device class group
0x05 Management/control-related device class group
0x06 AV-related device class group

0x07–0x0C Reserved for future use
0x0D Service class group
0x0E Profile class group
0x0F User definition class group

0x10–0x1F Communications definition class group for stipulation of
status notification method

0x20–0x2F Communications definition class group for stipulation of
setting control reception method

0x30–0x3F Communications definition class group for linked settings
(action settings)

0x40–0x4F Communications definition class group for linked settings
(trigger settings)

0x50–0x5F Secure communication access property setup class
0x60–0x7F Reserved for future use

4-13

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 4.2 List of Class Codes For Class Group Code (X1=0x00)

Class code Class name DETAILED
SPECIFICATIONS Remarks

0x00 Reserved for future use

0x01 Gas leak sensor ○

0x02 Crime prevention sensor ○

0x03 Emergency button ○

0x04 First-aid sensor ○

0x05 Earthquake sensor ○

0x06 Electric leak sensor ○

0x07 Human detection sensor ○

0x08 Visitor sensor ○

0x09 Call sensor ○

0x0A Condensation sensor ○

0x0B Air pollution sensor ○

0x0C Oxygen sensor ○

0x0D Illumination sensor ○

0x0E Sound sensor ○

0x0F Mailing sensor ○

0x10 Weight sensor ○

0x11 Temperature sensor ○

0x12 Humidity sensor ○

0x13 Rain sensor ○

0x14 Water level sensor ○

0x15 Bathwater level sensor ○

0x16 Bath heating status sensor ○

0x17 Water leak sensor ○

0x18 Water overflow sensor ○

0x19 Fire sensor ○

0x1A Cigarette smoke sensor ○

0x1B CO2 sensor ○

0x1C Gas sensor ○

0x1D VOC sensor ○

0x1E Differential pressure sensor ○

0x1F Air speed sensor ○

0x20 Odor sensor ○

0x21 Flame sensor ○

0x22 Electric energy sensor ○

0x23 Current value sensor ○

0x24 Daylight sensor

0x25 Water flow rate sensor ○

4-14

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Class code Class name DETAILED
SPECIFICATIONS Remarks

0x26 Micromotion sensor ○

0x27 Passage sensor ○

0x28 Bed presence sensor ○

0x29 Open/close sensor ○

0x2A Activity amount sensor ○

0x2B Human body location sensor ○

0x2C～0xFF Reserved for future use

Note: The "o" mark indicates that property configuration and other detailed
specifications can be found in the APPENDIX.

4-15

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 4.3 List of Class Codes For Class Group Code (X1=0x01)

Class code Class name DETAILED
SPECIFICATIONS Remarks

0x00～0x2F Reserved for future use

0x30 Home air conditioner ○

0x31 Cold air blower

0x32 Fan

0x33 Ventilation fan

0x34 Air conditioner ventilation fan ○

0x35 Air cleaner ○

0x36 Cold air fan

0x37 Air circulator

0x38 Dehumidifier

0x39 Humidifier

0x3A Ceiling fan

0x3B Electric kotatsu

0x3C Electric heating pad

0x3D Electric blanket

0x3E Space heater

0x3F Panel heater

0x40 Electric carpet

0x41 Floor heater

0x42 Electric heater ○

0x43 Fan heater

0x44 Recharger

0x45 Commercial package indoor air conditioner unit

0x46 Commercial package outdoor air conditioner unit

0x47 Commercial package air conditioner heat storage unit

0x48 Commercial fan coil unit

0x49 Commercial air conditioner chiller unit

0x50 Commercial air conditioner boiler unit

0x51 Commercial air conditioner VAV

0x52 Commercial air conditioner air handling unit

0x53 Unit cooler

0x54 Commercial condensing unit

0x55～0xFF Reserved for future use

Note: The "o" mark indicates that property configuration and other detailed
specifications can be found in the APPENDIX.

4-16

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 4.4 List of Class Codes For Class Group Code (X1=0x02)

Class code Class name DETAILED
SPECIFICATIONS Remarks

0x00～0x5F Reserved for future use
0x60 Electrically operated shadeblinds ○
0x61 Electrically operated shutter
0x62 Electrically operated curtain
0x63 Electrically operated storm window
0x64 Electrically operated garage door
0x65 Electrically operated skylight
0x66 Awning
0x67 Garden sprinkler
0x68 Fire sprinkler
0x69 Fountain
0x6A Instantaneous water heater
0x6B Off peak electric water heaterElectric water heater

that draws power at night
○

0x6C Solar water heater
0x6D Circulation pump
0x6E Bidet-equipped toilet (with electrically warmed seat)
0x6F Electric lock
0x70 Gas line valve
0x71 Home sauna
0x72 Hot water generatorWater heater ○
0x73 Bathroom dryer
0x74 Home elevator
0x75 Electrically operated room divider
0x76 Horizontal transfer
0x77 Electrically operated clothes-drying pole
0x78 Septic tank
0x79 Home solar power generationResidential solar

generator system
○

0x7A～0x7F Reserved for future use
0x80 Electric energy meter ○
0x81 Water meter
0x82 Gas meter ○
0x83 LP gas meter ○
0x84 Clock
0x85 Automatic door
0x86 Commercial elevator

0x87～0x8F Reserved for future use
0x90-0x98(*1) General lighting ○ Includes chandeliers, table

lamps, indirect lighting, recessed
lighting, spotlights, pendants,
ceiling lights, and wall lights.

0x99-0x9C(*2) Emergency lighting Includes guide lights,
emergency lights, safety
lights, and burglar prevention
lights.

0x9D Equipment light
0xA0 Buzzer ○

0x9E-0x9F
0xA1-0xFF

Reserved for future use

Note: The "o" mark indicates that property configuration and other detailed specifications can be
found in the APPENDIX.

4-17

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 4.5 List of Class Codes For Class Group Code (X1=0x03)

CLASS CODE CLASS NAME DETAILED
SPECIFICATIONS REMARKS

0x00–0xAF Reserved for future use
0xB0 Coffee maker
0xB1 Coffee mill
0xB2 Electric hot water pot ○
0xB3 Electric range
0xB4 Toaster
0xB5 Juicer/mixer
0xB6 Food processor
0xB7 Refrigerator/freezer ○
0xB8 Microwave oven ○
0xB9 Electric cooking implements
0xBA Oven
0xBB Rice cooker ○
0xBC Electronically operated rice cooker
0xBD Dishwasher
0xBE Dish dryer
0xBF Electric rice cake maker
0xC0 Food warmer
0xC1 Rice mill
0xC2 Bread machine
0xC3 Slow cooker
0xC4 Electric pickler
0xC5 Washing machine ○
0xC6 Clothes dryer
0xC7 Electric iron
0xC8 Pants press
0xC9 Futon dryer
0xCA Shoe/accessory dryer
0xCB Electric vacuum (centrally operated units

included)

0xCC Disposer
0xCD Electronic mosquito killer
0xCE Commercial showcase
0xCF Commercial refrigerator
0xD0 Commercial food warming case
0xD1 Commercial fryer
0xD2 Commercial microwave oven

0xD3–0xFF Reserved for future use

Note: The "o" mark indicates that property configuration and other detailed
specifications can be found in the APPENDIX.

4-18

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 4.6 List of Class Codes For Class Group Code (X1=0x04)

CLASS CODE CLASS NAME DETAILED
SPECIFICATIONS REMARKS

0x00 Reserved for future use
0x01 Scale ○
0x02 Thermometer
0x03 Sphygmomanometer
0x04 Blood sugar measuring unit
0x05 Body fat measuring unit

0x06–0xFF Reserved for future use

Note: The "o" mark indicates that property configuration and other detailed
specifications can be found in the APPENDIX.

Table 4.7 List of Class Codes For Class Group Code (X1=0x05)

CLASS CODE CLASS NAME DETAILED
SPECIFICATIONS REMARKS

0x00–0xFC Reserved for future use
0xFC Secure communication common key setup

node
● D,etailed specifications for

this class are given in Part
2, Paragraph 9.11.1.

0xFD Switch
0xFE Portable terminal
0xFF Controller

(Note) ●: Details, including the property configuration, are specified in Part 2.

Table 4.8 List of Class Codes For Class Group Code (X1=0x0E)

CLASS CODE CLASS NAME DETAILED
SPECIFICATIONS REMARKS

0x00–0xEF Reserved for future use
0xF0 Node profile ● Detailed specifications

for this class are given
in Part 2, Paragraph
9.11.1

0xF1 Router profile ● Detailed specifications
for this class are given
in Part 2, Paragraph
9.11.2

0xF2 ECHONET Communications Processing
Block profile

● Detailed specifications
for this class are given
in Part 2, Paragraph
9.11.3

0xF3 Protocol Difference Absorption Processing
Block profile

● Detailed specifications
for this class are given
in Part 2, Paragraph
9.11.4

0xF4 Lower-Layer media profile ● Detailed specifications
for this class are given
in Part 2, Paragraph

4-19

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.11.5
0xF5–0xFF Reserved for future use

(Note) ●: Details, including the property configuration, are specified in Part 2.
(*1) Separate class codes were assigned to chandeliers, table lamps, indirect lighting, recessed lighting, spotlights,
pendants, ceiling lights, and wall lights in Version 2.10 and the preceding versions, but these are collectively
treated as “general lighting” in Version 2.11 and succeeding versions.

(*2) Separate class codes were assigned to guide lights, emergency lights, safety lights, and burglar prevention
light in Version 2.10 and the preceding versions, but these are collectively treated as “emergency lighting” in
Version 2.11 and succeeding versions.

4-20

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

4.2.7 ECHONET Property (EPC)

This section provides detailed specifications for the ECHONET property (EPC) code shown in
Figs. 4.1-1 and 4.1-2. The EPC specifies a service target function. Each object stipulated by X1 (class
group code) and X2 (class code), described in the previous section, is specified here. (When a
specified object changes, the target function also changes even when the code remains unchanged.
However, the detailed specifications are designed to ensure that, whenever possible, the same
functions will have the same code.) Specific code values for each object are stipulated in Chapter 9
and the APPENDIX. These codes correspond to the object property identifiers in the object
definitions.

Fig. 4.7 EPC Detailed Specifications

Table 4.9 EPC Code Allocation Table
 8 9 A B C Ｄ Ｅ F
0
1
2
3
4
5
6
7
8
9
A
B
C
Ｄ
Ｅ
F

 ↑
b3–b0 values
 (hex)

Region shared by all
object classes

User-
defined*1

←b7–b4 values
 (hex)

Notes: 1) Stipulated for each user. In the case of a user-defined object class, 0xA to 0xF in the four
high-order bits (b7 to b4) are user-defined.

 2) As a rule these two regions are used, but in practice the boundary line will change for each
class group. Individual regions will be specified in the object class detailed specifications
in the APPENDIX and in Chapter 9.

Region shared by each
class group*2

Region unique to each class*2

1 ☆ ☆ ☆ ☆ ☆ ☆ ☆

Stipulated for four regions: shared by all objects;
shared by each object super class; unique to each
object class; and user-defined. (See Table 4.9.)

Fixed

Note: When b7=0, the other bits will be defined differently.

b7 b6 b5 b4 b3 b2 b1 b0

4-21

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

4.2.8 ECHONET Service (ESV)

This section provides detailed specifications for the ECHONET service (ESV) code shown in Figs.
4.1-1 and 4.1-2.

Fig. 4.8-1 ESV Detailed Specifications

This code stipulates manipulation of the properties stipulated by EOJ. The three main kinds of
operations are shown below. There are also two kinds of responses: the “response,” which is given
when the stipulated properties exist; and the “response not possible,” which is given when the
requested properties (including array elements) do not exist or when the stipulated service cannot be
processed.

“Request” / “Response” (response/response not possible) / “Notification”

A “response” is considered a reply to a “request” that requires a response; when the object

stipulated in the DEOJ exists, as a rule it is either “response” or “response not possible” (stipulated
processing cannot be accepted, or the stipulated object exists but the property does not). When the
request requires no response and the stipulated object does not exist, no response is made.

There are two types of "notification": one for transmitting the own property information
autonomously and the other for sending a response to a notification request. However, these two types
have the same code.

Three specific operations are provided: write (response required/no response required), read, and
notification (notification/notification with response required). The 12 operations shown below are set
in consideration of whether or not the content of the given property is an array.

① Property value write (response required/no response required)
② Property value read
③ Property value notification
④ Property value array-element-stipulated write (response required/no response
required)
⑤ Property value array-element-stipulated read
⑥ Property value array-element-stipulated notification
⑦ Property value array-element-stipulated addition (response required/no response

０ １ ☆ ☆ ☆ ☆ ☆ ☆

For details see Table 4.10.

Fixed

Note: In cases other than when b7:b6=0:1, the meaning of values b0–b5 will be specified separately.

b7 b6 b5 b4 b3 b2 b1 b0

4-22

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

required)
⑧ Property value array-element-stipulated deletion (response required/no response
required)
⑨ Property value array-element-stipulated existence confirmation
⑩ Property value array element addition (response required/no response required)
⑪ Property value notification (response required)
⑫ Property value array-element-stipulated notification (response required)

The relationship between message configuration (presence or absence of SEOJ and DEOJ) and

EPC and ESV is described below.

[1] The EPC in an ECHONET message stipulating only SEOJ indicates the properties of the

sender object specified in SEOJ. Here, ESV contains an autonomous “notification” or
“notification” or “response” in response to a request for properties specified in SEOJ and
EPC. If ESV is a “request” in such a case, the received message is treated as an illegal
message.

[2] The EPC in an ECHONET message stipulating only DEOJ indicates the properties of the
destination object specified in DEOJ. Here, ESV contains a “request” regarding the
properties specified in DEOJ and EPC. If ESV is a “response” or a “notification” in such a
case, the received message is treated as an illegal message.

[3] For ECHONET messages stipulating both SEOJ and DEOJ, the ESV value is used to
determine whether the EPC is stipulated by the SEOJ or the DEOJ. When the ESV is a
“response” or a “notification”, the EPC is considered to be a component of the object
specified by SEOJ and is viewed as a “response” or “notification” directed towards the
object stipulated in the DEOJ. When the ESV is a “request,” the EPC is considered to be a
component of the DEOJ and is viewed as a “request” from the object stipulated in the
SEOJ.

Tables 4.10-1 through 4.10-3 show specific ESV code assignments based on the content described

above. Specific descriptions of ① through ⑫ above will be provided in (1) through (12). (The
related number is indicated in the Remarks column of the Table.) In the figures in (1) through (12), the
DEOJ for "requests" is shown as an individually stipulated code. However, when the DEOJ indicates
a broadcast to all instances of a specified class (when the DEOJ's X3 = 0x00), a response is
transmitted with both "process not possible" response and "response" configured for each target
instance. Note that in the Table, the “array elements” described above are presented as “elements.” Fig.
4.8-2 provides a sequence diagram of the relationships between individual ESVs.

4-23

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 4.10-1 List of ESV Codes for Requests
Service Code

(ESV) ECHONET Service Content Symbol Remarks

0x60 Property value write request (no response required) SetI
0x61 Property value write request (response required) SetC

 (1)

0x62 Property value read request Get (2)
0x63 Property value notify request INF_REQ (3)
0x64 Property value element-stipulated write request (no response required) SetMI
0x65 Property value element-stipulated write request (response required) SetMC

 (4)

0x66 Property value element-stipulated read request GetM (5)
0x67 Property value element-stipulated notify request INFM_REQ (6)
0x68 Property value element-stipulated add request (no response required) AddMI
0x69 Property value element-stipulated add request (response required) AddMC

 (7)

0x6A Property value element-stipulated delete request (no response required) DellMI
0x6B Property value element-stipulated delete request (response required) DellMC

 (8)

0x6C Property value element existence confirm request CheckM (9)
0x6D Property value element add request (no response required) AddMSI
0x6E Property value element add request (response required) AddMSC

 (10)

0x6F Reserved for future use

Table 4.10-2 List of ESV Codes for Response/Notification
Service Code

(ESV) ECHONET Service Content Symbol Remarks

0x71 Property value write response Set_Res ESV=0x61 response (1)
0x72 Property value read response Get_Res ESV=0x62 response (2)
0x73 Property value notification INF *1 (3)
0x74 Property value notification (response required) INFC (11)
0x75 Property value element-stipulated write response SetM_Res ESV=0x65 response (4)
0x76 Property value element-stipulated read response GetM_Res ESV=0x66 response (5)
0x77 Property value element-stipulated notify INFM *2 (6)
0x78 Property value element-stipulated notify (response required) INFMC (12)
0x79 Property value element-stipulated add response AddM_Res ESV=0x69 response (7)
0x7A Property value notify response INFC_Res ESV=0x74 response (11)
0x7B Property value element-stipulated delete response DelM_Res ESV=0x6B response (8)
0x7C Property value element-stipulated existence confirm

response
CheckM_Res ESV=0x6C response (9)

0x7D Property value element-stipulated notify response INFMC_Res ESV=0x78 response (12)
0x7E Property value element add response AddMS_Res ESV=0x6E response (10)
0x70,
0x7F

Reserved for future use

Notes: *1 Used for autonomous property value notification and for 0x63 response.
*2 Used for autonomous property value notification and for 0x67 response.

4-24

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 4.10-3 List of ESV Codes for “Response Not Possible” Responses
Service Code

(ESV) ECHONET Service Content Symbol Remarks

0x50 Property value write “process not possible” response SetI_SNA ESV=0x60 response not
possible (1)

0x51 Property value write “process not possible” response SetC_SNA ESV=0x61 response not
possible (1)

0x52 Property value read “process not possible” response Get_SNA ESV=0x62 response not
possible (2)

0x53 Property value notify “process not possible” response INF_SNA ESV=0x63 response not
possible (3)

0x54 Property value element-stipulated write request “process
not possible” response

SetMI_SNA ESV=0x64 response not
possible (4)

0x55 Property value element-stipulated write request “process
not possible” response

SetMC_SNA ESV=0x65 response not
possible (4)

0x56 Property value element-stipulated read request “process
not possible” response

GetM_SNA ESV=0x66 response not
possible (5)

0x57 Property value element-stipulated notify request “process
not possible” response

INFM_SNA ESV=0x67 response not
possible (6)

0x58 Property value element-stipulated add request “process not
possible” response

AddMI_SNA ESV=0x68 response not
possible (7)

0x59 Property value element-stipulated add request “process not
possible” response

AddMC_SNA ESV=0x69 response not
possible (7)

0x5A Property value element-stipulated delete request “process
not possible” response

DelMI_SNA ESV=0x6A response not
possible (8)

0x5B Property value element-stipulated delete request “process
not possible” response

DelMC_SNA ESV=0x6A response not
possible (8)

0x5C Property value element-stipulated existence confirm
request “process not possible” response

CheckM_SNA ESV=0x6C response not
possible (9)

0x5D Property value element add request “process not possible”
response

AddMSI_SNA ESV=0x6D response not
possible (10)

0x5E Property value element add request “process not possible”
response

AddMSC_SNA ESV=0x6E response not
possible (10)

0x5F Reserved for future use

4-25

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

esv=0x6* (*=0,4,8,A,D)

ECHONET node

ECHONET node
 (has relevant property)

esv=0x6* (*=1,2,5,6,9,B,C,E)

ECHONET node

ECHONET node
 (has relevant property)

esv=0x7* (*=1,2,5,6,9,B,C,E)

esv=0x6* (*=1,2,3,5,6,7,9,B,C,E)

ECHONET node

ECHONET node
 (has relevant property)

esv=0x63/0x67

ECHONET node

ECHONET node
(does not have relevant property)

esv=0x73/0x77

Process
possible

Process not
possible

esv=0x5* (*=1,2,3,5,6,7,9,B,C,E)

esv=0x6* (*=0–E)

ECHONET node

ECHONET node
 (has relevant object but not property)

esv=0x6* (*=0–E)

ECHONET node

ECHONET node
(has relevant object)

Process not
possible

esv=0x5* (*=0–E)

<no response>

<no response>

General broadcast

Individual response

Individual response

Individual response

esv=0x73/0x77

ECHONET node

ECHONET node
 (has relevant property)

Autonomous announcement
(individual/broadcast arbitrary)

Fig. 4.8-2 Service-related Basic Sequence Diagram

4-26

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(1) Property value write service [0x60,0x61,0x71,0x50,0x51]

In the case of a “request” (0x60,0x61), this indicates a request to write the content shown in EDT to
the property stipulated in the EPC of the object stipulated in DEOJ. In response to this “request,” when
a value indicating a response is stipulated (0x61) and the request is to be (or has already been) received,
“response” (0x71) is returned. This “response” is not a processing implementation response. When the
request is not to be received, or when the stipulated DEOJ exists but the stipulated EPC does not exist,
“response not possible” (0x50,0x51) is returned. In the response frame format, SEOJ represents the
value of the object stipulated by the request, and the relevant property is set in EPC. When the relevant
object itself does not exist, neither “response” nor “response not possible” is returned. (See Fig. 4.8-2
for the exchange procedure.) Also, the “response” message DEA is defined as the requesting entity
(i.e., the request message SEA).

When EDATA stipulates SEOJ during a “request,” the EOJ stipulated by SEOJ in EDATA during the
“request” is allocated as a DEOJ (b1 of OHD is also set to 1), in the case of both “response not
possible” and “response.”

OHD EPC ESV DEOJ EDATA configuration during request

OHD EPC ESV SEOJ

0x71

EDATA configuration during “process ”
response

OHD EPC ESV SEOJ EDATA configuration during “process not
possible” response

0x50/0x51

EDT

0x60,61

b0=1

b1=1

b0=1

4-27

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(2) Property value read service [0x62,0x72,0x52]

In the case of a “read” (0x62), this indicates a request to read the content of the property stipulated in
the EPC of the object stipulated in the DEOJ. In response to this “read,” when the request is to be (or
has already been) accepted, “response” (0x72) is returned. When the request is not to be accepted, or
when the stipulated DEOJ exists but the stipulated EPC does not exist, “response not possible” (0x52)
is returned. In the response frame format, the value of the object stipulated by the request is set in
SEOJ, the requested property is set in EPC, and the value of the requested property (i.e., the read
content) is set in EDT. When “response not possible” is returned, nothing is written to the EDT. When
the relevant object itself does not exist, neither “response” nor “response not possible” is returned. (See
Fig. 4.8-2 for the exchange procedure.) Also, the “response” message DEA is defined as the
requesting entity (i.e., the request message SEA).

When EDATA stipulates SEOJ during a “request,” the EOJ stipulated by SEOJ in EDATA during the
“request” is allocated as a DEOJ (b1 of OHD is also set to 1), in the case of both “response not
possible” and “response.”

OHD EPC ESV DEOJ EDATA configuration during request

OHD EPC ESV EDT SEOJ

0x62

0x72

EDATA configuration during “process”
response

OHD EPC ESV SEOJ EDATA configuration during “process not
possible” response

0x52

b1=1

b0=1

b0=1

4-28

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(3) Property value notification service [0x63,0x73,0x53]

There are two types of “notification”: the notification sent as a response to a “notify request” (0x63)
and the autonomous notification which is unrelated to notify requests. The codes for the two types are
identical. (Here, notification in response to a “notify request” signifies an announcement that dos not
specify the property value [content], while an autonomous notification is a voluntary announcement
that was not made in response to a request.) In the case of a “notify request” (0x63), this indicates a
request to notify (by general broadcast; hereafter “announce” will signify a general broadcast to the
entire domain) the content of the property stipulated in the EPC of the object stipulated in the DEOJ.
In response to this “notify request,” when the request was accepted, a “response” (0x73) value is
notified; when the request is not to be accepted, a “response not possible” response (0x53) value is
returned. In the response frame format, the value of the object stipulated by the request is set in SEOJ,
the requested property is set in EPC, and the value of the requested property (i.e., the notification
content) is set in EDT. Here, DEA is set to general broadcast, but when “response not possible” is
returned, nothing is written to the EDT, and the DEA sets the EA value of the requester. When the
relevant object itself does not exist, neither “response” nor “response not possible” is returned. (See
Fig. 4.8-2 for the exchange procedure.) In the case of an autonomous "notification", the DEA is set to
a general broadcast for a required status change notification. In the other cases, however, the DEA can
be set as desired regardless of whether "broadcast" or "individual" is selected.

When EDATA stipulates SEOJ during a request, the EOJ stipulated by SEOJ in EDATA during the
“request” is allocated as a DEOJ. In the case of both “response not possible” and “process,” the EOJ
stipulated in the SEOJ in the EDATA during “request” is allocated as a DEOJ within the EDATA (b1
of OHD is also set to 1). In the case of autonomous notification, the required notification of status
change does not add a DEOJ; in all other cases, the addition of a DEOJ is optional.

OHD EPC ESV DEOJ EDATA configuration during request

OHD EPC ESV EDT SEOJ

0x63

0x73

EDATA configuration during “process” response

OHD EPC ESV SEOJ EDATA configuration during “process not
possible” response

0x53

EDATA configuration during autonomous
notification

b1=1

b0=1

b0=1

4-29

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(4) Property value element-stipulated write service [0x64,0x65,0x75,0x54,0x55]

In the case of a “request” (0x64, 0x65), this indicates a request to write the value stipulated in the EDT
(includes array element number and write request value data) of the property stipulated in the EPC of
the object stipulated in the DEOJ. In response to this “request,” when a value to process the response is
stipulated, and when the request is to be (or has already been) accepted, a “response” (0x75) is
returned. However, this “response” is not a processing implementation response. When the request is
not to be accepted, or when the stipulated DEOJ exists but the stipulated EPC does not exist, and
when the stipulated DEOJ and EPC exist but the array element does not, “response not possible”
(0x54, 0x55) is returned. In the frame format for response, the value of the object stipulated by the
request is SEOJ, and the relevant property is set in EPC. When the relevant object itself does not exist,
neither “response” nor “response not possible” is returned. (See Fig. 4.9-2 for the exchange
procedure.) Also, the “response” message DEA is defined as the requesting entity (i.e., the request
message SEA).
When the request is not to be accepted, or when the stipulated DEOJ and EPC exist but the array
element does not, the “response not possible” EDT is the array element number of the “request.”
When the stipulated DEOJ exists but the stipulated EPC does not, the “response not possible” is
without EDT.

The content of each array element number in an array format property is defined separately for each
property. When the stipulated (array) element does not exist, “response not possible” is returned. Also,
when EDATA stipulates SEOJ during a “request,” the EOJ stipulated in SEOJ by EDATA during the
“request” is allocated as a DEOJ within EDATA (b1 of OHD is also set to 1) in the case of both
“response not possible” and “response.”

OHD EPC ESV DEOJ EDATA configuration during request

OHD EPC ESV SEOJ

0x75

EDATA configuration during “process”
response

OHD EPC ESV SEOJ EDATA configuration during “process not
possible” response

0x54/0x55

EDT

Array Element No. Write data

0x64,65

Max 245 bytes
2 bytes (Unsigned short)

b1=1

b0=1

b0=1

Array Element No.

2 bytes (Unsigned short)
Not required when responding for no property

Array Element No.
2 bytes (Unsigned short)

4-30

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(5) Property value element-stipulated read service [0x66,0x76,0x56]

In the case of a “read” (0x66), this indicates a request to read the content stipulated in the array element
indicated in the EDT (includes array element number data to be read) of the property stipulated in the
EPC of the object stipulated in the DEOJ. In response to this “read,” when the request is to be (or has
already been) accepted, “response” (0x72) is returned. When the request is not to be accepted, or when
the stipulated DEOJ exists but the stipulated EPC does not, and when the stipulated DEOJ and EPC
exist but the array element does not, “response not possible” (0x52) is returned. In the frame format for
response, the value of the object stipulated by the request is set in SEOJ, the requested property is set
in EPC, and the value (read content) of the requested property is set in EDT. In the case of “response
not possible”, when the request is not to be accepted, or when the stipulated DEOJ and EPC exist but
the array element does not, the “response not possible” EDT is the array element number of the
“request.” When the stipulated DEOJ exists but the stipulated EPC does not, the “response not
possible” is without EDT. When the relevant object itself does not exist, neither “response” nor
“response not possible” is returned. (See Fig. 4.9-2 for the exchange procedure.) Also, the “response”
message DEA is defined as the requesting entity (i.e., the request message SEA).

The content of each array element number in an array format property is defined separately for each
property. When the stipulated array element (element) does not exist, “response not possible” is
returned. Also, when EDATA stipulates SEOJ during a “request,” the EOJ stipulated in the SEOJ by
EDATA during the “request” is allocated as a DEOJ within the EDATA (b1 of OHD is also set to 1) in
the case of both “response not possible” and “response.”

OHD EPC ESV DEOJ EDATA configuration during request

OHD EPC ESV EDT SEOJ

0x75

EDATA configuration during “process”
response

EDT

Array Element No.

0x66

2 bytes (Unsigned Char)

OHD EPC ESV SEOJ EDATA configuration during “process not
possible” response

0x56

Array Element No.

Read data

Max 245 bytes
2 bytes (Unsigned short)

b1=1

b0=1

b0=1

Array Element No.
2 bytes (Unsigned short)
Not required when responding for no property

4-31

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(6) Property value element-stipulated notification service [0x67,0x77,0x57]

There are two types of “notification”: notification sent in response to a “notify request” (0x67); and
autonomous notification, which is unrelated to notify requests. The two types are not distinguished
from each other in the codes. (Here, notification in response to a “notify request” signifies an
announcement that dos not specify the property value [content], while an autonomous notification is a
voluntary announcement that was not made in response to a request from someone.) In the case of a
“notify request” (0x67), this indicates a request to notify (announce) the content of the array element
number stipulated in the EDT of the property stipulated in the EPC of the object stipulated in the
DEOJ. In response to this “notify request,” when the request was accepted, an array element value
(content) is announced as a “response” (0x77). When the request is not to be accepted, or when the
stipulated DEOJ exists but the stipulated EPC does not, and when the stipulated DEOJ and EPC exist
but the array element does not, “response not possible” (0x57) is returned. In the frame format for
response, the value of the object stipulated by the request is set in SEOJ, the requested property is set
in EPC, and the value of the requested array element number and its array element value (i.e., the
notification content) is set in EDT. Here, DEA is set to general broadcast, but when “response not
possible” is returned, the DEA sets the EA value of the requester. When the relevant object itself does
not exist, neither “response” nor “response not possible” is returned. (See Fig. 4.9-2 for the exchange
procedure.)
When the request is not to be accepted, or when the stipulated DEOJ and EPC exist but the array
element does not, the “response not possible” EDT is the array element number of the “request.”
When the stipulated DEOJ exists but the stipulated EPC does not, the “response not possible” is
without EDT.

OHD EPC ESV DEOJ EDATA configuration during request

OHD EPC ESV EDT
SEOJ

0x77

EDATA configuration during “process”
response

EDT

Array Element No.
0x67

2 bytes (Unsigned short)

OHD EPC ESV SEOJ EDATA configuration during “process not
possible” response

0x57

Array Element No. Read data

Max 245 bytes
2 bytes (Unsigned short)

EDATA configuration during autonomous
notification

b1=1

b0=1

b0=1

Array Element No.
2 bytes (Unsigned short)
Not required when responding for no property

4-32

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

The content of each array element number is defined separately for each property. When the stipulated
(array) element does not exist, “response not possible” is returned. Also, when EDATA stipulates
SEOJ during a “request,” the EOJ stipulated in the SEOJ by EDATA during the “request” is allocated
as a DEOJ within the EDATA (b1 of OHD is also set to 1) in the case of both “response not possible”
and “response.” In the case of autonomous notification, the required notification of status change does
not add a DEOJ; in all other cases, the addition of a DEOJ is optional.

4-33

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(7) Property value element-stipulated addition [0x68,0x69,0x58,0x59,0x79]

In the case of a “request” (0x68, 0x69), this indicates a request to add the array element indicated in
the EDT (includes array element number and write request value) of the property stipulated in the
EPC of the object stipulated in the DEOJ, and to write the value stipulated therein. In response to this
“request,” when a value indicating implementation of the response (0x68) is stipulated, and when the
request is to be (or has already been) accepted, a “response” (0x78) is returned. However, this
“response” is not a processing implementation response. When the request is not to be accepted, or
when the stipulated DEOJ exists but the stipulated EPC does not, and when the stipulated DEOJ and
EPC exist but the array element does not, “response not possible” (0x58, 0x59) is returned. In the
frame format for response, the value of the object stipulated by the request is set in SEOJ, and the
requested property is set in EPC. When the relevant object itself does not exist, neither “response” nor
“response not possible” is returned. (See Fig. 4.9-2 for the exchange procedure.) Also, the “response”
message DEA is defined as the requesting entity (i.e., the request message SEA).
When the request is not to be accepted, or when the stipulated DEOJ and EPC exist but the array
element does not, the “response not possible” EDT is the array element number of the “request.”
When the stipulated DEOJ exists but the stipulated EPC does not, the “response not possible” is
without EDT.

The content of each array element number in an array format property is defined separately for each
property. When the stipulated array element (element) does not exist, “response not possible” is
returned. Also, when EDATA stipulates SEOJ during a “request,” the EOJ stipulated in the SEOJ by
EDATA during the “request” is allocated as a DEOJ within the EDATA (b1 of OHD is also set to 1) in
the case of both “response not possible” and “response.”

OHD EPC ESV DEOJ EDATA configuration during request

OHD EPC ESV SEOJ

0x79

EDATA configuration during “process”
response

OHD EPC ESV SEOJ EDATA configuration during “process not
possible” response

0x58/0x59

EDT

Array Element No. Write data

0x68,0x69

Max 246 bytes
2B (Unsigned short)

b1=1

b0=1

b0=1

Array Element No.
 2 bytes (Unsigned short)

Not required when responding for no property

Array Element No.
2 bytes (Unsigned short)

4-34

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(8) Property value element-stipulated deletion [0x6A, 0x6B, 0x5A, 0x5B, 0x7B]
In the case of a “request” (0x6A, 0x6B), this indicates a request to delete the array element indicated in
the EDT (array element number) from the property stipulated in the EPC of the object stipulated in the
DEOJ. In response to this “request,” when a value indicating implementation of the response (0x6B)
is stipulated, and when the request is to be (or has already been) accepted, a “response” (0x7B) is
returned. However, this “response” is not a processing implementation response. When the request is
not to be accepted (including cases in which the deletion is not to be implemented), or when the
stipulated DEOJ exists but the stipulated EPC does not, “response not possible” (0x5A, 0x5B) is
returned. In the frame format for response, the value of the object stipulated by the request is set in
SEOJ, and the relevant property is set in EPC. When the relevant object itself does not exist, neither
“response” nor “response not possible” is returned. (See Fig. 4.9-2 for the exchange procedure.) Also,
the “response” message DEA is defined as the requesting entity (i.e., the request message SEA).
When the request is not to be accepted, or when the stipulated DEOJ and EPC exist but the array
element does not, the “response not possible” EDT is the array element number of the “request.”
When the stipulated DEOJ exists but the stipulated EPC does not, the “response not possible” is
without EDT.

The content of each array element number in an array format property is defined separately for each
property. When the stipulated array element (element) does not exist, “response not possible” is
returned. Also, when EDATA stipulates SEOJ during a “request,” the EOJ stipulated in the SEOJ by
EDATA during the “request” is allocated as a DEOJ within the EDATA (b1 of OHD is also set to 1) in
the case of both “response not possible” and “response.”

OHD EPC ESV DEOJ EDATA configuration during request

OHD EPC ESV SEOJ

0x79

EDATA configuration during “process”
response

OHD EPC ESV SEOJ EDATA configuration during “process not
possible” response

0x5A/0x5B

EDT

Array Element No.
0x6A,0x6B

2 bytes (Unsigned short)

b1=1

b0=1

b0=1

Array Element No.
 2 bytes (Unsigned short)

Not required when responding for no property

Array Element No.
2 bytes (Unsigned short)

4-35

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(9) Property value element-stipulated existence confirmation [0x6C, 0x5C, 0x7C]

In the case of a “request” (0x6C), this indicates a request to confirm the existence of the array element
indicated in the EDT (includes array element number value information) in the property stipulated in
the EPC of the object stipulated in the DEOJ. When the request is to be (or has already been) accepted,
a "response" (0x7C) is returned. When the request is to be rejected (cannot be processed by the ESV)
or when the specified DEOJ exists but the specified EPC does not exist, a "process not possible"
(0x5C) is returned. In the frame format for response, the value of the object stipulated by the request is
set in SEOJ, and the relevant property is set in EPC. When the relevant object itself does not exist,
neither “response” nor “response not possible” is returned. (See Fig. 4.9-2 for the exchange
procedure.) Also, the “response” message DEA is defined as the requesting entity (i.e., the request
message SEA).
When the request is not to be accepted, or when the stipulated DEOJ and EPC exist but the array
element does not, the “response not possible” EDT is the array element number of the “request.”
When the stipulated DEOJ exists but the stipulated EPC does not, the “response not possible” is
without EDT.

The content of each array element number in an array format property is defined separately for each
property. Also, when EDATA stipulates SEOJ during a “request,” the EOJ stipulated in the SEOJ by
EDATA during the “request” is allocated as a DEOJ within the EDATA (b1 of OHD is also set to 1) in
the case of both “response not possible” and “response.”

OHD EPC ESV DEOJ EDATA configuration during request

OHD EPC ESV

EDT

SEOJ

0x7C

EDATA configuration during “process”
response

OHD EPC ESV SEOJ EDATA configuration during “process not
possible” response

0x5C

EDT

Array Element No.
0x6C

2 bytes (Unsigned short)

Array Element No. Confirm existence
result

Exists :0x30
Does not exist :0x31

b1=1

b0=1

b0=1

Array Element No.
 2 bytes (Unsigned short)

Not required when responding for no property

4-36

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(10) Property value element addition [0x6D, 0x6E, 0x5D, 0x5E, 0x7E]

In the case of a “request” (0x6D, 0x6E), this indicates a request to newly add an array element to the
property stipulated in the EPC of the object stipulated in the DEOJ, and to write to the newly added
array element the value data stipulated in the EDT. In response to this “request,” when a value
indicating implementation of the response (0x6E) is stipulated, and when the request is to be (or has
already been) accepted, a “response” (0x7F) is returned. However, this “response” is a processing
implementation response, and the added array element number is returned as an EDT. When the
request is not to be accepted, or when the stipulated DEOJ exists but the stipulated EPC does not,
“response not possible” (0x5D, 0x5E) is returned. In the frame format for response, the value of the
object stipulated by the request is set in SEOJ, and the relevant property is set in EPC. When the
relevant object itself does not exist, neither “response” nor “response not possible” is returned. (See
Fig. 4.9-2 for the exchange procedure.) Also, the “response” message DEA is defined as the
requesting entity (i.e., the request message SEA).
For “response not possible”, EDT does not exit.

The content of each array element number in an array format property is defined separately for each
property. Also, when EDATA stipulates SEOJ during a “request,” the EOJ stipulated in the SEOJ by
EDATA during the “request” is allocated as a DEOJ within the EDATA (b1 of OHD is also set to 1) in
the case of both “response not possible” and “response.”

OHD EPC ESV DEOJ EDATA configuration during request

OHD EPC ESV SEOJ

0x79

EDATA configuration during “process”
response

OHD EPC ESV SEOJ EDATA configuration during “process not
possible” response

0x58/0x59

EDT

0x68,0x69 Max 246 bytes
Additional write data

b1=1

b0=1

b0=1

Array Element No.
2 bytes (Unsigned Char)

4-37

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(11) Property value notification (response required) [0x74, 0x7A]

The "notification (response required)" (0x74) autonomously notifies a specific node of the property
value stipulated by the EPC of the SEOJ-stipulated object and requests a response. The response
process for this "notification (response required)" varies depending on whether the DEOJ is specified.
When the DEOJ is not specified, the "response" (0x7A) for autonomous notification reception is
returned at all times.
When the DEOJ is specified, on the other hand, the subsequent process varies depending on whether
the specified DEOJ exists. If the specified DEOJ exists, the "response" (0x7A) for autonomous
notification reception is returned. If the specified DEOJ does not exist, the message is discarded.
If a node receives a "notification (response required)" for which a broadcast is specified, the node
discards the message.

b0=1

OHD EPC ESV SEOJ

0x7A

b1=1

OHD EPC ESV EDT SEOJ

0x74

EDT DEOJ

DEOJ

EDATA configuration for "notification"

EDATA configuration for "response"

4-38

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(12) Property value element-stipulated notification (response required) [0x78, 0x7D]

The "notification (response required)" (0x78) autonomously notifies a specific node of the array
element value stipulated by the EDT (array element number) of the property stipulated by the EPC of
the SEOJ-stipulated object, and requests an acknowledgment. The response message format and
response process for this "notification (response required)" varies depending on whether the DEOJ is
specified.
When the DEOJ is not specified, the "response" (0x7D) for notification reception is returned at all
times.
When the DEOJ is specified, on the other hand, the subsequent process varies depending on whether
the specified DEOJ exists. If the specified DEOJ exists, the "response" (0x7D) for notification
reception is returned. If the specified DEOJ does not exist, the message is discarded.
If a node receives a "notification (response required)" for which a broadcast is specified, the node
discards the message.

OHD EPC SEOJ

OHD EPC SEOJ

EDT

b0=1

b1=1

Array Element
No.

Data for
notification

Max245B
２B（Unsigned Short）

２B（Unsigned Short）

ESV

ESV

0x7D

0x78

DEOJ

DEOJ

EDATA configuration for "notification"

EDATA configuration for "response"
Array Element

No.

4-39

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

The services shown in Tables 4.10-1 through 4.10-3 above are specified for each property. Regarding
those stipulated as services that must be incorporated in each property, if they have the functions of
that property and disclose via communications (read/write notification, etc.), this indicates that they
must be processed. Processing of services for each property is specified in Part II, Chapter 9 and in the
ECHONET Objects Detailed Specifications APPENDIX of Part II in the Access Rules column of the
object class detailed specification tables. Access rules indicate all services that can be implemented. In
this specification, the following nine access rules are specified:

Set Processes services related to write requests for non-array property values
 (Performs processing indicated in (1))
Get Processes services related to read requests for non-array property values
 (Performs processing indicated in (2) (3) and (11))
SetM Processes services related to write requests for array property values
 (Performs processing indicated in (4))
GetM Processes services related to read requests for array property values
 (Performs processing indicated in (5) (6) and (12))
AddM Processes services related to element-stipulated add requests for array property

values
 ((Performs processing indicated in (7))
DellM Processes services related to delete requests for array property values
 (Performs processing indicated in (8))
CheckM Processes services related to existence confirm requests for array property value

elements
 (Performs processing indicated in (9))
AddMS Processes services related to non-array-element-stipulated add requests for array

property values
 (Performs processing indicated in (10))
Anno Processes non-array property value notification services
 (Performs processing indicated in (3) and (11))
AnnoM Processes array property value notification services
 (Performs processing indicated in (6) and (12))

The above processing is specified for each property; there is no mixed stipulation of Set and

SetM or of Get and GetM.

4-40

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

4.2.9 ECHONET Property Value Data (EDT)

This section presents detailed specifications for the code for the ECHONET property value data
(EDT) range shown in Fig. 4.1-1, Fig. 4.1-2. EDT consists of data for the relevant ECHONET
property (EPC), such as status notification or specific setting and control by an ECHONET service
(ESV). Detailed specifications are provided for the size, code value, etc., of EDT for each EPC (see
Chapter 9.)

4.2.10 ECHONET Data Counter (EDC)

This section provides detailed specifications for the ECHONET data counter (EDC) code that is a
component of ECHONET split frames shown in Fig. 4.1-3.
Messages may be split into a maximum of eight components, and b0–b2 shows the order of the split
messages (starts at b0=b1=b2=0; ends at a maximum of b0=b1=b2=1). The split message identifier
stipulation bit (b4, b5, b6) is also specified for cases in which a message from the ECHONET
Communications Processing Block is sent repeatedly to the same node and in which all of the
repeated messages require splitting. However, the method for setting this value will not be specified
here. Therefore, in the receiving-side Protocol Difference Absorption Processing Block, messages
with the same MAC Address for the source and the same values for b4–b6 are assembled based on
the data contained in the b0–b2 split counter.

Note: The meanings of the bits when b7 = 0 are to be stipulated in the future (reserved for future use).

Fig. 4.10 EDC Detailed Specifications

When a message is not split, values will be set as follows: b2:b1:b0=0:0:0 and b3=1. When the
intended destination is the same, it is recommended that split messages having the same identifier be
sent without other intervening messages.

１ ＃ ＃ ＃ ＊ ☆ ☆ ☆

b7 b6 b5 b4 b3 b2 b1 b0

Specifies order (No.) of split message.

Fixed (reserved for future use)

Indicates end of split message.
0:To be continued; 1:End of message
Stipulates split-transmission message identifier.

4-41

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

4.2.11 Compound ECHONET Service (CpESV)

This section provides detailed specifications for the compound ECHONET service (CpESV) code
shown in Figs. 4.1-1 and 4.1-2.

Fig. 4.11 EpESV Configuration

The service provided by this code is used when the compound message format is used. It specifies a
simultaneous action for two or more properties stipulated by the EPC. However, it does not stipulate
the order of operations. The order of property operations is an implementation issue.
Three types of operations are provided: request, response, and notification. The response is subdivided
into two types: "accepted" response and "process not possible" request. The "accepted" response is
used when the service request in relation to all the EPC-stipulated properties is accepted. The "process
not possible" request is used when one or more specified properties do not exist or when the specified
service cannot be processed for one or more properties.

- Request
- Response ("accepted" response/"process not possible" response)
- Notification

The "response" is a response to a "request" that requires a response. It must be returned when a
DEOJ-stipulated object exists. When the service processing request related to all the EPC-stipulated
properties is accepted, the "accepted" response must be returned. If the processing request related to
one or more specified properties cannot be accepted or if the object exists but one or more properties
do not exist, "process not possible" must be returned. When the "request" does not require any
response or when the specified object does not exist, no "response" will be returned.
Further, "write" (response-required write/no-response-required write), "read", and "notification"
(autonomous notification/response-required notification) are regarded as specific operations.
Therefore, the following five types are set. Regarding the OpESV for compound messages, array
element properties are not targeted.

① Property value write request (no response required)

０ １ ☆ ☆ ☆ ☆ ☆ ☆
b7 b6 b5 b4 b3 b2 b1 b0

For details, see Tables 4.11 to 4.13.

Fixed (reserved for future use)Reserved for
f

Note: When bits b7 and b6 are 0 and 1, respectively, the meanings of bits b0 to b5
are stipulated separately.

4-42

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

② Property value write request (response required)
③ Property value read request
④ Property value notification
⑤ Property value notification (response required)

The CpESV and message configurations (presence of SEOJ and DEOJ) and their relationship to EPC
and ESV are described below.

[1] The EPC of an ECHONET message in which only the SEOJ is specified indicates the property

of the SEOJ-stipulated source object. In this case, the "response", "notification", or autonomous
"notification" concerning the "request" related to two or more SEOJ-/EPC-stipulated properties is
positioned in the CpESV. When the CpESV is a "request" while this configuration is employed,
the associated message must be handled as an erroneous message.

[2] The EPC of an ECHONET message in which only the DEOJ is specified indicates the property

of the DEOJ-stipulated destination object. In this case, the "request" related to two or more
DEOJ-/EPC-stipulated properties is positioned in the CpESV. When the CpESV is a "response"
or "notification" while this configuration is employed, the associated message must be handled as
an erroneous message.

[3] The EPC of an ECHONET message in which the SEOJ and DEOJ are both specified is such

that the CpESV value determines whether the target object is stipulated by the SEOJ or DEOJ.
When the CpESV is a "response" or "notification", it is concluded that the EPC forms an
SEOJ-stipulated object and that the "response" or "notification" is addressed to a DEOJ-stipulated
object. When the CpESV is a "request", on the other hand, it is concluded that the EPC forms a
DEOJ and that the "request" is issued from an SEOJ-stipulated object.

Tables 4.11 to 4.13 show specific CpESV code assignments. The details of ① through ⑤ above
are given in (1) through (5) (the related numbers are indicated in the Remarks column of the tables).
The figures in (1) through (5) presume that the DEOJ for a "request" is an individually specified code.
However, when the DEOJ indicates an instance general broadcast, a response is transmitted with both
"process not possible" response and "response" configured for each target instance. Fig. 4.12 shows a
sequence diagram, which indicates the relationships between individual CpESVs. The codes marked
"reserved for future use" in the tables are to be stipulated in the future and must not be used with
Version 2.11.

4-43

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 4.11 List of CpESV Codes for Request/Notification

Service
Code ECHONET Service Content Symbol Remarks

0x60 Property value write request (no response required) CpSetI (1)
0x61 Property value write request (response required) CpSetC (2)
0x62 Property value read request CpGet (3)

0x63-0x6F Reserved for future use

Table 4.12 List of CpESV Codes for "Accepted" Response

Service
Code ECHONET Service Content Symbol Remarks

0x71 Property value write "accepted" response CpSet_Res CpESV=61 response (2)
0x72 Property value read "accepted" response CpGet_Res CpESV=62 response (3)
0x73 Property value notification CpINF_Res (4)
0x74 Property value notification (response required) CpINFC (5)
0x7A Property value notification response CpINFC_Res CpESV=74 response (5)

0x75-0x79,
0x7B-0x7F

Reserved for future use

Table 4.13 List of CpESV Codes for "Process Not Possible" Response

Service
Code ECHONET Service Content Symbol Remarks

0x50 Property value write "process not possible"
response (1)

CpSetI_SNA CpESV=60 "process not
possible" response (1)

0x51 Property value write "process not possible"
response (2)

CpsSetC_SNA CpESV=61 "process not
possible" response (2)

0x52 Property value read "process not possible"
response

CpGet_SNA CpESV=62 "process not
possible" response (3)

0x5F Message length excessive CpOverFlow Response to be returned
when the response
message is too long

0x53-0x5E Reserved for future use

4-44

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fig. 4.12 Basic Sequence

CpESV=0x60

ECHONET node
ECHONET node

(having a target property)

CpESV=0x6＊(＊=1,2),0x74

CpESV=0x7＊(＊=1,2,A）

CpESV=0x6＊(＊=1,2)

CpESV=0x73

Processable

Non-processable CpESV=0x5＊(＊=1,2)

CpESV=0x6＊(＊=0～2) CpESV=0x6＊(＊=0～2),0x74

Non-processable CpESV=0x5＊(＊=0～2)

<No response>

Individual/general broadcast

Individual response

ECHONET node
ECHONET node

(having a target property)

ECHONET node
ECHONET node

(having a target property) ECHONET node ECHONET node
(having a target property)

ECHONET node ECHONET node
(having a target object but no property) ECHONET node

ECHONET node
(without a target object)

Individual response

Individual response

<No response>

4-45

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(1) Property value write request (requiring no response) service [0x60, 0x50]
The write request requiring no response (CpESV = 0x60) requests that the EDT-stipulated contents be
written into the EPC-stipulated properties of the DEOJ-stipulated object. The order of write operations
is not stipulated. The response from a request-processing node is as indicated below:

(a) When a processing request for all properties are accepted
 No response will be made.

(b) When one or more properties relevant to the request do not exist, a processing request to one or

more properties cannot be accepted, or an array property is targeted
 A write "process not possible" response (1) (CpESV = 0x50) will be returned.

(c) When the object relevant to the request does not exist
 No response will be made.

(d) When two or more identical properties exist in the request message
 Individual processes will be performed on the presumption that differing requests are issued. A

response will be made in accordance with the processing results.
Note: The order of processes depends on the implementation. Therefore, the resulting final

property status and value also depend on the implementation.

The message structure of a write "process not possible" response to a property value write request
(requiring no response) is such that the object code of the request destination becomes the SEOJ and
that the object code of the request source becomes the DEOJ. The OPC takes the same value as in the
request message.
For requests (request 1 to request n) that relate to nonexistent properties and process requests that are
rejected, both the PDC and EDT use the same values as those used in the write request. For requests
related to properties for which processing requests are accepted, the PDC value is 0x01 and the EDT
value is omitted. As for the EPC, the EPC in the request message is used as is. If the target object does
not exist, neither the "response" nor the "process not possible" response is returned.
An appropriate value for the OHD must be specified in accordance with the SEOJ/DEOJ
configuration in the message. Fig. 4.13 shows the relationship between a write request requiring no
response and write addition response for situations where request m cannot be accepted. The EPC
sequence in the request message must be equal to the EPC sequence in the write "process not
possible" response message.

4-46

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fig. 4.13 Relationship Between Write Request (Requiring No Response) and Write "Process Not
Possible" Response

SEOJ
Cp

ESV OPC DEOJ OHD PDC

Request 1

SEOJ
Cp

ESV OPC DEOJ OHD

Size of
response 1

EDATA/PEDATA for write request
(requiring no response)

0x60

0x50

0x01
EDATA/PEDATA for "process not possible" response to write
request (requiring no response)

EPC EDT ・・・PDC ・・・ PDC ・・・ EPC EDT ・・・EPC EDT

PDC EPC ・・・PDC ・・・ PDC ・・・ EPC ・・・ EPC

Response 1

Size of
request 1

Processable Non-processable

EDT

0x01

Size of
response m

Size of
request m

Size of
response n

Size of
request n

Response m Response n

Request m Request n

Processable

4-47

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(2) Property value write request (requiring a response) service [0x61, 0x71, 0x51]
The write request requiring a response (CpESV = 0x61) requests that the EDT-stipulated contents be
written into the EPC-stipulated properties of the DEOJ-stipulated object. The order of write operations
is not stipulated. The response from a request-processing node is as indicated below:

(a) When a processing request for all properties are accepted
 A write "accepted" response (CpESV = 0x71) will be returned.

(b) When one or more properties relevant to the request do not exist, a processing request to one or

more properties cannot be accepted, or an array property is targeted
 A write "process not possible" response (CpESV = 0x51) will be returned.

(c) When the object relevant to the request does not exist
 No response will be made.

(d) When two or more identical properties exist in the request message
 Individual processes will be performed on the presumption that differing requests are issued. A

response will be made in accordance with the processing results.
Note: The order of processes depends on the implementation. Therefore, the resulting final

property status and value also depend on the implementation.

The message structure of a write "process not possible" response to a property value write request
(requiring a response) is such that the object code of the request destination becomes the SEOJ and
that the object code of the request source becomes the DEOJ. The OPC takes the same value as in the
request message.
For requests (request 1 to request n) that relate to nonexistent properties and process requests that are
rejected, both the PDC and EDT use the same values as those used in the write request. For requests
related to properties for which processing requests are accepted, the PDC value is 0x01 and the EDT
value is omitted. As for the EPC, the EPC in the request message is used as is. If the target object does
not exist, neither the "response" nor the "process not possible" response is returned.
The message structure of a write "accepted" response is such that the object code of the request
destination becomes the SEOJ and the object code of the request source becomes the DEOJ. The OPC
and subsequent values are omitted.
An appropriate value for the OHD must be specified in accordance with the SEOJ/DEOJ
configuration in the message. Fig. 4.14 shows the relationships among a write request requiring a
response, a write "accepted" response, and a write "process not possible" response for situations where
request m cannot be accepted. The EPC sequence in the request message must be equal to the EPC
sequence in the write "process not possible" response message.

4-48

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fig. 4.14 Relationship Among Write Request (Requiring a Response), Write "Accepted" Response,

and Write "Process Not Possible" Response

SEOJ
Cp

ESV OPC DEOJ OHD

SEOJ
Cp

ESV OPC DEOJ OHD

0x61

0x51

EDATA/PEDATA for write request
(requiring a response)

EDATA/PEDATA for "process not possible" response to
write request (requiring a response)

EDATA/PEDATA for write "accepted"
response

PDC

0x01

EPC EDT ・・・PDC ・・・ PDC ・・・ EPC EDT ・・・EPC EDT

PDC EPC ・・・ PDC ・・・ PDC ・・・ EPC ・・・ EPC EDT

0x01

SEOJ
Cp

ESV OPC DEOJ OHD

0x71

0x01

PDC EPC ・・・ PDC ・・・ PDC ・・・ EPC ・・・ EPC

0x01 0x01

Request 1

Size of
response 1 Response 1

Size of
request 1

Processable Non-processable

Size of
response m

Size of
request m

Size of
response n

Size of
request n

Response m Response n

Request m Request n

Processable

Size of
response 1 Response 1 Size of

response m
Size of

response n Response m Response n

4-49

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(3) Property value read request service [0x62, 0x72, 0x52, 0x5F]
The property value read request (CpESV = 0x62) requests that the contents of EPC-stipulated
properties of the DEOJ-stipulated object be read. The order of read operations is not stipulated. The
response from a request-processing node is as indicated below:

(a) When a processing request for all properties are accepted
 A read "accepted" response (CpESV = 0x72) will be used to return all the read values.

(b) When one or more properties relevant to the request do not exist, a processing request to one or

more properties cannot be accepted, or an array property is targeted
 A write "process not possible" response (CpESV = 0x52) will be used to return the values of the

read properties.

(c) When the object relevant to the request does not exist
 No response will be made.

(d) When two or more identical properties exist in the request message
 Individual processes will be performed on the presumption that differing requests are issued. A

response will be made in accordance with the processing results.
Note: The order of processes depends on the implementation. Therefore, if two or more property

states are read, the resulting final status depends on the implementation.

The message structure of a read "process not possible" response is such that the object code of the
request destination becomes the SEOJ and the object code of the request source becomes the DEOJ.
The OPC takes the same value as in the request message.
For requests (request 1 to request n) that relate to nonexistent properties and process requests that are
rejected, the PDC value is 0x01 and the EDT value is omitted. For requests related to properties for
which processing requests are accepted, the read value is placed in the EDT and the total number of
EPC and EDT bytes is regarded as the PDC. If the target object does not exist, neither the "response"
nor the "process not possible" response is returned.
The message structure of a read "accepted" response is such that the object code of the request
destination becomes the SEOJ and the object code of the request source becomes the DEOJ. The read
value is placed in the EDT, and the total number of EPC and EDT bytes is regarded as the PDC.
An appropriate value for the OHD must be specified in accordance with the SEOJ/DEOJ
configuration in the message. Fig. 4.15 shows the relationships among a read request, a read
"accepted" response, and a read "process not possible" response for situations where request m cannot
be accepted. The EPC sequence in the request message must be equal to the EPC sequence in the read
"accepted" response and read "process not possible" response messages.

4-50

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fig. 4.15 Relationship Among Read Request (Requiring a Response), Read "Accepted" Response,

and Read "Process Not Possible" Response

As is obvious from Fig. 4.15, the read "accepted" response message is longer than the read response
message. Therefore, the maximum permissible message length may be exceeded when an attempt is
made to return all the property values that are read in compliance with the request. In such a situation,
a response will be made using the message length overflow service code (CpESV = 0x5F). In this
case, the responding side can determine the number of property values to be returned; however, the
sequence of such properties must be the same as in the request message.

SEOJ
Cp

ESV OPC DEOJ OHD

SEOJ
Cp

ESV OPC DEOJ OHD

0x62

0x52

EDATA/PEDATA for read request

EDATA/PEDATA for read "process not
possible" response

EDATA/PEDATA for read "accepted"
response

SEOJ
Cp

ESV OPC DEOJ OHD

0x62

PDC

0x01

EPC ・・・ PDC ・・・ PDC ・・・ EPC ・・・ EPC

PDC EPC EDT ・・・ PDC ・・・ PDC ・・・ EPC ・・・EPC EDT

PDC EPC EDT ・・・PDC ・・・ PDC ・・・ EPC EDT ・・・EPC EDT

Request 1

Size of
response 1 Response 1

Size of
request 1

Processable Non-processable

Size of
response m

Size of
request m

Size of
response n

Size of
request n

Response m Response n

Request m Request n

Processable

Size of
response 1 Response 1

Size of
response m

Size of
response n Response m Response n

4-51

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(4) Property value notification service [0x73]
The property value notification (CpESV = 0x73) reads the contents of EPC-stipulated properties and
reports them to the DEOJ-stipulated object. When the DEOJ is not contained in the message, it is a
notification to nodes. Either "individual" or "broadcast" can be selected for addressing purposes. The
order of property value notifications is not stipulated. Nodes receiving this message will not return a
response.

Fig. 4.16 Relationship Between Notification Request and Notification Response

EDATA/PEDATA for property value notification

SEOJ
Cp

ESV OPC DEOJ OHD

0x73

PDC

Notification
content 1

EPC EDT ・・・PDC ・・・ PDC ・・・ EPC EDT ・・・EPC EDT

Size of
notification
content 1

Size of
notification
content 2

Size of
notification
content n

Notification
content m

Notification
content n

4-52

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(5) Property value notification (requiring a response) service [0x74, 0x7A]
The property value notification requiring a response (CpESV = 0x74) reads the contents of
EPC-stipulated properties and reports them to the DEOJ-stipulated object. When the DEOJ is not
contained in the message, it is a notification to a node. Only "individual" is available for addressing
purposes. The order of property value notifications is not stipulated. The response from a node
receiving this message is as indicated below:

(a) When a notification is accepted
 A property value notification response (CpESV = 0x7A) will be returned.

(b) When the DEOJ-stipulated object does not exist
 No response will be made.

The message structure of the notification response is such that the object code of the request
destination becomes the SEOJ and the object code of the request source becomes the DEOJ. The OPC
takes the same value as in the request message.
An appropriate value for the OHD must be specified in accordance with the SEOJ/DEOJ
configuration in the message. Fig. 4.17 shows the relationship between the property value notification
(requiring a response) service and property value notification response service. The EPC sequence in
the property value notification request service message must be equal to the EPC sequence in the
property value notification response service message.

Fig. 4.17 Relationship Between Property Value Notification (Requiring a Response) and Property
Value Notification Response

SEOJ
Cp

ESV OPC DEOJ OHD

0x74

EDATA/PEDATA for notification
(requiring a response)

DATA/PEDATA for notification
(requiring a response)

PDC EPC EDT ・・・PDC ・・・ PDC ・・・ EPC EDT ・・・EPC EDT

SEOJ
Cp

ESV OPC DEOJ OHD

0x7A

0x01

PDC EPC ・・・ PDC ・・・ PDC ・・・ EPC ・・・ EPC

0x01 0x01

Size of
notification 1 Notification 1 Notification m Notification n

Size of
response 1 Response 1 Size of

response m
Size of

response n Response m Response n

Size of
notification

m

Size of
notification

n

4-53

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
4 Message Structure (Frame Format)

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

4.2.12 Processing Target Property Counter(OPC)

The processing target property counter is used in the compound message format only. It consists of
one byte. In a compound message, the processing target property counter retains the number of
properties targeted for a write or read operation. This counter can retain the value 1 or greater.
Therefore, a compound message is allowed to exist even when the number of simultaneously
operable properties is only one. The maximum number of simultaneously operable properties is
limited by the maximum permissible message length.
If, for instance, there are three requests as shown in Fig. 4.18, the processing target property counter is
0x03.

Fig. 4.18 Processing Target Property Counter for Three Requests

4.2.13 Property Data Counter(PDC)

The processing data counter is used in the compound message format only. It retains the number of
bytes in the ECHONET property code (EPC) and ECHONET data (EDT), which follow the proper
data counter. If, for instance, the ECHONET data sizes for requests 1, 2, and 3 are 2 bytes, 1 byte, and
5 bytes, respectively, the values placed in the first, second, and third property data counters are 0x03,
0x02, and 0x06, respectively, as shown in Fig. 4.19.

Fig. 4.19 Property Data Counter

SEOJ
Cp

ESV OPC DEOJ OHD

0x03

PDC

Request 1

EPC EDT PDC PDC

Size of
request 1

EPC EDT EPC EDT

Request 2 Request 3

Size of
request 2

Size of
request 3

SEOJ
Cp

ESV OPC DEOJ OHD

0x03

PDC EPC EDT PDC PDC EPC EDT EPC EDT

２Byte １Byte ５Byte 0x02 0x06

Request 1
Size of

request 1 Request 2 Request 3

Size of
request 2

Size of
request 3

 5-1

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Chapter5 Basic Sequences

5.1 Basic Concept

Of the sequences exchanged between the ECHONET Communication Middleware (or more
precisely, between ECHONET Communications Processing Blocks) for nodes connected to the
ECHONET network, those that must be implemented are called “basic sequences.” This section
divides these basic sequences into four main categories for specification:

1) Basic sequences for object control
2) Basic sequences for node startup (1)
3) Basic sequences for node startup (2)
4) Basic sequences for node normal operation

ECHONET Nodes are divided into devices with ECHONET Router functions and devices

without such functions. “Basic sequences for node startup (1)” shows the basic sequence for startup of
ECHONET nodes in general, while “Basic sequences for node startup (2)” shows the basic sequence
for startup of ECHONET devices with ECHONET router functions.

Depending on the type of device, some of the basic sequences specified in this section, all of which
are required, involve complex exchanges and therefore entail much heavier communications
processing than application processing. Therefore, the specifications were formulated to make the
sequences as simple as possible.

The ECHONET Communications Processing Block's internal processing sequence that is
performed at node startup is described in Section 6.7, "Startup Processing".

 5-2

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.2 Basic Sequences for Object Control

ECHONET Communication Middleware exchanges are performed by stipulating the service
(ESV:ECHONET service) with respect to the object property specified in the previous Section. Basic
sequences for objects can be broadly divided into basic sequences for object control in general and
basic sequences for service content (see below). These two types will be described below.

1) Basic sequences for object control in general
2) Basic sequences for service content

5.2.1 Basic Sequences for Object Control in General

The ECHONET Communication Middleware performs the following five processes as basic
processing when it receives a service (specified in Table 4.10) for an object property. The first three
processes are described here. The fifth process (E) will be described in the next section under Basic
Sequences for Service Content.

A) Processing when the controlled object does not exist
B) Processing when the controlled object exists but the controlled property does not exist

or control content cannot be interpreted
C) Processing when both the controlled object and controlled property exist but the

stipulated array element does not exist or control content cannot be interpreted
D) Processing when the controlled property exists but the stipulated service processing

functions are not available
E) Processing when the controlled property exists and the stipulated service processing

functions are available

 (A) Processing when the controlled object does not exist
The received ECHONET message is discarded, and no response is required.

Fig. 5.1 Basic Sequence When Object Class to Be Controlled Does Not Exist

ECHONET node

Message*

Discard received message
(no response required)

~

~

Note: Message stipulating a DEOJ
that does not exist in the destination
ECHONET node

 5-3

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

 (B) Processing performed when the object to be controlled exists but the property to be controlled

does not exist or cannot be interpreted
The received ECHONET message is discarded, and the associated "process not possible"
response (ESV = 0x50 to 0x5E) is returned. The figure below shows the basic sequence that
is performed when a received request (ESV = 0x6# (#: 0 to E)) relates to an existing DEOJ
and nonexistent EPC:

Fig. 5.2 Basic Sequence Performed Upon Message Reception When Object to Be
Controlled Exists But Property to Be Controlled Does Not Exist or Cannot Be Interpreted

ECHONET node

Request message with ESV = 0x6#

Discard received message
("process not possible"

response required)

~

~

Response message with ESV = 0x5#

 5-4

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

 (C) Processing performed when the object and property to be controlled exist but the specified array

element does not exist or cannot be interpreted
The received ECHONET message is discarded. However, the "process not possible"
response (ESV = 0x54 to 0x5E) associated with the specified service (ESV = 0x64 to 0x6E)
is returned. The figure below shows the basic sequence:

Fig. 5.3 Basic Sequence Performed Upon Message Reception When Object and Property to
Be Controlled Exist But Specified Array Element Does Not Exist or Cannot Be Interpreted

 (D) Processing when the controlled property exists but the stipulated service processing functions are
not available

Same as for (B) above.

ECHONET node

Request message with ESV = 0x6#

Discard received message
("process not possible"

response required)

~

~

Response message with ESV = 0x5#

 5-5

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.2.2 Basic Sequences for Service Content

The ECHONET Communication Middleware has three basic processing sequences for the
reception of object property-related services (specified in Table 4.10), assuming the stipulated property
exists and has service functions:

A) Basic sequence for receiving a request (no response required)
B) Basic sequence for receiving a request (response required)
C) Basic sequence for property value notification (autonomous notification)

 (A) Basic sequence performed when a request requiring no result-indicating response is received
There are some operations (ESV = 0x60 to 0x6F) that an ECHONET node performs in relation
to properties. The figure below shows the ECHONET node's basic sequence that is performed
upon receipt of ESV = 0x60, 0x64, 0x68, 0x6A, or 0x6D (no response required):

Fig. 5.4 Basic Request Receiving Sequence for ESV=0x60,0x64,0x68,0x6A,0x6D

ECHONET node

Request message with ESV=0x60,0x64,0x68,0x6A,0x6D

Property value control
(write or read) request received

~

~

 5-6

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

 (B) Basic sequence for receiving a request (response required)

Fig. 5.5 shows the basic sequence, for each ESV, for an ECHONET node that has received a
property value-related manipulation from another ECHONET node (ESV=0x60 to 0x6F),
where ESV=0x61 to 0x63,0x65 to 0x67,0x69,0x6B,0x6C,0x6E (response required).

・Basic request receiving sequence for ESV=0x6* (*:1,2,5,6,9,B,C,E)
 (response is returned to request message source)

・Basic request receiving sequence for ESV=0x6# (#:3,7)
 (response returned using general broadcast)

Fig. 5.5 Basic Request Receiving Sequence for ESV=0x6α (α:1–3,5–7,9,B,C,E)

～

～

～

～

ECHONET node

Request message with ESV=0x6*

Property value control
(write, read, add, delete, or confirm) request

Response message with ESV=0x7*

ECHONET node

Request message with ESV=0x6*

Property value control
(notify) request accepted

Response message with ESV=0x7*

 5-7

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

 (C) Basic sequence for property value notification
The Fig. below shows the basic sequence for properties that are required to notify their status when the
object property value changes (i.e., when there is a change in the status setting from the application
software).

Fig. 5.6 Basic Sequence for Property Value Change

ECHONET node

Broadcast message with ESV=0x7*

Object property value
Change

~

*:3,7

 5-8

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.3 Basic Sequence for ECHONET Node Startup

For the ECHONET nodes described in this section, startup begins with the acquisition of an
ECHONET address for self-recognition and specification. As was noted in Chapter 2, “ECHONET
Addresses” above, an ECHONET address consists of a Node ID and a Net ID.

This section will specify the following two Net ID acquisition processing sequences, assuming that
the Node ID has already been obtained when the ECHONET Communication Middleware begins
operation:

 (1) Basic sequence for cold start*1
 (2) Basic sequence for warm start*2

This section will describe the default router that appears in the basic sequence. The ECHONET

Communication Middleware performs exchange without recognition of the relevant subnets by using
ECHONET addresses that identify ECHONET nodes. Nodes having ECHONET addresses with the
same Net ID are part of the same subnet, and in the Lower-layer Communications Software it is
possible to send messages directly to another ECHONET node by specifying the MAC address.
Meanwhile, nodes whose ECHONET addresses have different Net IDs belong to other subnets that
are connected by routers. The concept of “default routers” was introduced to reduce the processing
load on individual (non-router) ECHONET nodes when source ECHONET messages to ECHONET
nodes in other subnets. Individual (non-router) ECHONET nodes contain default router data, which
consists of the ECHONET address for one of the routers connected to the same subnet, when their Net
IDs are set. Therefore, when sending an ECHONET message to an ECHONET node in another
subnet, they simply need to send the message to the default router, regardless of the intended
destination’s subnet (see Section 6.3.2 Send message Routing Processing Specifications). When more
than one router exists within a single subnet, the question of which router to specify as a node’s default
router is not specified.

The basis sequences stated in this section are performed when the Net ID is within the automatic
assignment range. This section does not stipulate ECHONET nodes whose Net ID is within the range
open to users (0x90 to 0xFF).

Notes: *1 <Cold start>

Start by resetting Communications Middleware and Lower-layer Communications
Software, which resets ECHONET address.

*2 <Warm start>
Start with Net ID settings preserved.
Starts with ECHONET address already set.

 5-9

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.3.1 Basic Sequence for ECHONET Node Cold Start

During a cold start, the ECHONET node Communications Middleware obtains a Node ID from
the lower-layer transmission medium or from the application software settings, and then obtains a Net
ID via ECHONET. Shown below is the basic sequence by which an ECHONET node acquires a Net
ID during a cold start.

The Fig. below shows the basic processing sequence after the Node ID has been set (i.e., after
communication within the subnet via lower-layer transmission media becomes possible):

Message (1) ・ Sets default value (x'00') not stipulated in SEA Net ID.
・ Uses the DEA to stipulate a general broadcast to all nodes within the own subnet (0x01FF).
・ Stipulates (with DEOJ) router profile objects (0x0EF101)・No SEOJ stipulation.
・ Stipulates Net ID properties (0xE1) with EPC.・Stipulates read request (0x62) with ESV.

Message (2) ・ Individual response message. (The DEA is the SEA of message (1). The SEA is the router EA whose Net
ID is 0x00.)
・ Stipulates read request by message (1) (SEOJ=0x0EF101,EPC=0xE1,ESV=0x72,EDT=Net ID data).

Message (3) ・ Stipulates broadcast to all nodes within domain (0x01FF) with DEA.
・ Uses the SEA to stipulate the own FA in accordance with the assigned Net ID.
・ Stipulates node profile objects (0x0EF001) with SEOJ.・No DEOJ stipulation.
・ Stipulates instance change class announcement property (0xD5) with EPC.
・Stipulates notification announcement (0x73) with ESV.

T2 Message (2) reception wait timeout. When message (2) is not received by time T2 (design guideline: 60sec),
0x00 is assigned as Net ID.

Fig. 5.7 Basic Sequence for ECHONET Node Startup (1)

New startup
ECHONET node

Response from booted
ECHONET router

Internal initial processing /
Node ID set/completion

Within T2

Net ID set
Default router EA set

Message (1): Net ID read request

Message (2): Net ID read response

Message (3):Instance change class announcement

(General broadcast within the subnet)

 (General broadcast within the domain)
When there are 9 or more instance change classes, a number of
messages (3) will be generated. (See 9.11.1 (14).)

 5-10

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.3.2 Basic Sequence for ECHONET Node Warm Start

The Fig. below shows the basic sequence for an ECHONET node during a warm start. During a
warm start, there are situations in which a node that has been cut off from ECHONET or was in a
resting state but still retains its ECHONET address and other data is reconnected to ECHONET or
rebooted.

The sequence shown in Fig. 5.8-1 is performed when the Net ID returned in response to a Net ID
read request issued to the default router matches the own Net ID information. If a response carrying
message (2) is not received, the process indicated in Fig. 5.8-2 is performed. Further, if the Net ID
information provided by message (2) in Fig. 5.8-1 or message (2) in Fig. 5.8-2 does not match the
own information, the process for an ECHONET node cold start is performed as described in the
previous section.

Message (1) ・ Sets own (retained) ECHONET address with SEA.
・ Stipulates default router address with DEA.
・ Stipulates (with DEOJ) router profile object (0x0EF101)・No SEOJ stipulation.
・ Stipulates Net ID properties (0xE1) with EPC.・Stipulates read request (0x62) with ESV.

Message (2) ・ Individual response message. (The DEA is the SEA of message (1). The SEA is the router EA whose Net
ID is 0x00.)
・ Stipulates read request by message (1) (SEOJ=0x0EF101,EPC=0xE1,ESV=0x72,EDT=Net ID data).

Message (3) ・ Stipulates broadcast to all nodes within domain (0x00FF) with DEA.
・ Stipulates node profile object (0x0EF001) with SEOJ.・No DEOJ stipulation.
・ Stipulates instance change class announcement property (0xD5) with EPC.・Stipulates notification

announcement (0x73) with ESV.
T2 Message (2) reception wait timeout. When message (2) is not received by time T2 (design guideline: 60sec),

begin cold start processing.

Fig. 5.8-1 Basic Sequence for ECHONET Node Startup (2)

New startup
ECHONET node

Rest state; ECHONET
address already set

Within T2

Confirm match between message
(2) Net ID and own Net ID

Message (1):Net ID read request

Message (2):Net ID read response

Message (3):Instance change class announcement

(addressed to default router)

 (General broadcast within the domain)
When there are 9 or more instance change classes, a number of messages
(3) will be generated. (See 9.11.1 (14).)

Reconnect to ECHONET

(A cold start is performed if they do not match.)

 5-11

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Message (1) ・ Sets own (retained) ECHONET address with SEA.
・ Stipulates default router address with DEA.
・ Stipulates (with DEOJ) router profile object (0x0EF101)・No SEOJ stipulation.
・ Stipulates Net ID properties (0xE1) with EPC.・Stipulates read request (0x62) with ESV.

Message (2) (Stipulates broadcast to all nodes within a subnet with DEA. Others are same as those of message (1).)
Message (3) ・ Individual response message. (DEA is SEA of message (1); SEA is EA of router.)

・ Stipulates read request by message (1) (SEOJ=0x0EF101,EPC=0xE1,ESV=0x72,EDT=Net ID data).
Message (4) ・ Stipulates broadcast to all nodes within domain (0x00FF) with DEA.

・ Stipulates node profile object (0x0EF001) with SEOJ.・No DEOJ stipulation.
・ Stipulates instance change class announcement property (0xD5) with EPC.・Stipulates notification

announcement (0x73) with ESV.
T2 Net ID read response reception wait timeout.

If message (3) is not received within T2 (design guideline: 60 sec), the operation starts according to the
previously retained EA.

Fig. 5.8-2 Basic Sequence for ECHONET Node Startup (3)

New startup
ECHONET node

Rest state; ECHONET
address already set

Message (1):Net ID read request

Message (2):Net ID read request

Message (3):Instance change class announcement

(addressed to default router)

 (General broadcast within the domain)
When there are 9 or more instance change classes, a number of messages
(3) will be generated. (See 9.11.1 (14).)

Reconnect to ECHONET

Message (3):Net ID read response

(General broadcast within the subnet)

T2 elapsed
No response

Within T2

Check for a match between
the message (3) Net ID and
own Net ID or a message (3)
wait timeout (the router does
not exist).

(A cold start is performed if the Net IDs
do not match. If they match or if the router
does not respond, startup is achieved with
the retained Net ID.)

 5-12

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.4 Basic Sequence for ECHONET Router Startup

ECHONET defines ECHONET routers with the object of facilitating the creation of networks
encompassing different subnets. ECHONET router device specifications will be provided in Part 7.
This section will describe the basic sequence for ECHONET router startup.

ECHONET routers are divided into two classes: routers with special functions (hereafter referred
to as parent routers) and ordinary routers (hereafter referred to as normal routers). There can be only
one parent router within an ECHONET domain; it assigns Net IDs to other routers and need not
function as a router (i.e., to connect subnets). In other words, the label “parent router” is applied to
ECHONET nodes functioning as Net ID servers. When ordinary ECHONET devices are designated
as parent routers, parent router functions should be given priority.

When two or more routers exist within a subnet, one router exists in the path to their parent router
and is given router data by the parent router before other routers within the same subnet. This router is
called the "master router" in the subnet (the master router is stipulated by the "master router data"
property of the router profile object). Within subnets other than the subnet nearest the parent router (in
the path to the parent router), all normal routers become "master routers" (see Fig. 5.9). The master
router data is used for a normal router cold start/warm start.

The following four basic sequences are stipulated for ECHONET router startup. Sequences (3) and

(4) stipulate normal routers.

(1) Basic sequence for parent router cold start*1
(2) Basic sequence for parent router warm start*2
(3) Basic sequence for normal router cold start*1
(4) Basic sequence for normal router warm start*2

The basis sequences stated in this section are performed when the Net ID is within the automatic

assignment range. This section does not stipulate ECHONET nodes whose Net ID is within the range
open to users (0x90 to 0xFF).

Notes: *1 <Cold start>
Start by resetting Communications Middleware and Lower-layer Communications
Software, which resets ECHONET addresses.

*2 <Warm start>
Start with Net ID settings preserved.
Starts with ECHONET addresses already set.

 5-13

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fig. 5.9 Schematic of Master Router Data

Subnet A

(NetID=0x01)

Subnet B
(NetID=0x02)

Subnet C
(NetID=0x03)

Subnet C
(NetID=0x04)

Normal router

Property in router profile
・NetID：0x01
・Master router data: 0x00 (slave router specified)

Property in router profile
・NetID：0x02
・Master router data: 0x02 (Net ID value)

There is only one master
router in a subnet. Parent router

Property in router profile
・NetID：0x01
・Master router data: 0x01 (Net ID value)

Property in router profile
・NetID：0x02
・Master router data: 0x00 (slave router specified)

Property in router profile
・NetID：0x04
・Master router data: 0x04 (Net ID value)

Property in router profile
・NetID：0x02
・Master router data: 0x00 (slave router specified)

Property in router profile
・NetID：0x03
・Master router data: 0x03 (Net ID value)

Normal router Normal router

 5-14

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.4.1 Basic Sequence for Parent Router Cold Start

When two or more subnets are formed, only one parent router (Net ID server function) exists in a
domain. It sets and manages the Net IDs and router IDs of normal routers. The means of specifying
the parent router operation start is stipulated separately (see Part 7, Section 2.4). This section illustrates
a typical basic sequence for the cold start of a parent router that is connected to two subnets and
provided with router functions. If the parent router does not have router functions, the resulting
sequence involves only one of the two subnets shown below. If the parent router is connected to three
or more subnets and capable of exercising the routing function for such subnets, the number of
transmissions of a message is equal to the number of connected subnets.

Message (1) ・Stipulates unstipulated default value (x’00’) with SEA Net ID.
・Stipulates general broadcast within subnet (0x01FF) with DEA.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates Net ID properties (0xE1) with EPC. ・Stipulates read request with ESV (0x62).

Message (2) ・Sets own SEA value with SEA. ・Stipulates general broadcast within subnet (0x01FF) with DEA.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates Net ID properties (0xE1) with EPC. ・Stipulates read request with ESV (0x60).

Message (3) ・Stipulates general broadcast (0x01FF) with DEA. ・Stipulates node profile object (0x0EF001) with EOJ.
・Stipulates instance change class announcement property (0xD5) with EPC.
・Stipulates status announcement (0x73) with ESV.

T3 When the network connecting the parent router already has a Net ID (a Net ID other than 0x00 is assigned), it is
conceivable that another parent router already exists. Therefore, the new parent router (Net ID server function)
cannot be started. If a Net ID read response is returned within T3 (design guideline: 60 sec), the parent router
(Net ID server function) stops operating (does not start up).

Fig. 5.9 Basic Sequence for Parent Router Cold Start

T3 T3

ECHONET node
(parent router)

Internal initial processing /
Node ID setting complete

Subnet A Subnet B

Internal initial processing /
Node ID setting complete

Message (1): Net ID read request

(General broadcast within the subnet)
Message (1): Net ID read request

(General broadcast within the subnet)

Self EA setting
(Net ID setting complete)

Message (2): Net ID read response
(broadcast within the subnet)

(broadcast within the domain)
Message (3):Instance change class announcement

Self EA setting
(Net ID setting complete)

Message (2): Net ID read response
(broadcast within the subnet)

(broadcast within the domain)
Message (3):Instance change class announcement

Begin normal operation When there are 9 or more instance
change classes, a number of messages
(3) will be generated. (See 9.11.1 [14].)

When there are 9 or more instance
change classes, a number of messages
(3) will be generated. (See 9.11.1 [14].)

 5-15

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.4.2 Basic Sequence for Parent Router Warm Start

It is assumed that the parent router warm-starts when the entire power supply to a domain is shut
off due, for instance, to a power failure. The following four cases may be encountered when the parent
router attempts to warm-start:

Case 1 No other routers exist in the connected subnet.

- Startup will be achieved with the locally retained information.
Case 2 The other routers exist in the connected subnet and the parent router data retained by all

such routers agrees with the locally retained information. No other parent router exists.
- Startup will be achieved with the locally retained information.
- Information will be collected from all routers. Any necessary repairs will be made

(e.g., subnet ID assignment).
Case 3 The other routers exist in the connected subnet and the parent router data retained by

such routers partly disagrees with the locally retained information. No other parent router
exists.
- Startup will be achieved with the locally retained information.
- Information will be collected from all routers. Repairs will be made (e.g., subnet ID

assignment).
Case 4 The other routers exist in the connected subnet and another parent router exists.

- The parent router functions will not be exercised. For participation in the domain, a
cold start will have to be performed. However, it is recommended that an alarm or
other means of reporting an abnormality be provided to notify a parent router change
before performing a cold start.

Figs. 5.10-1 and 5.10-2 show the parent router warm start basic sequence to be performed in Cases

1 to 3 on the presumption that the parent router is connected to one subnet. If the parent router is
connected to two or more subnets, the number of transmissions of a message is equal to the number of
connected subnets. Case 4 is explained under "Note" in Fig. 5.10-2.

 5-16

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Message (1) ・Sets EA value that is retained as SEA.
・Stipulates intra-subnet general broadcast (0x01FF) with DEA.
・Stipulates a router profile object (0x0EF101) with DEOJ.
・Stipulates Net ID property (0xE1) with EPC. ・Stipulates read request (0x62) with ESV.

Message (2) ・Sets own SEA value with SEA. ・Stipulates intra-subnet general broadcast (0x01FF) with DEA.
・Stipulates node profile object (0x0EF001) with DEOJ.
・Stipulates Net ID property (0xE1) with EPC. ・Stipulates write request (0x60) with ESV.

Message (3) ・Stipulates general broadcast (0x01FF) with DEA.
・Stipulates node profile object (0x0EF001) with SEOJ.
・Stipulates instance change class announcement property (0xD5) with EPC.
・Stipulates status notification (0x73) with ESV.

T3 Timeout in the wait for Net ID read response reception from another router. If a response is received before the
timeout, one of the sequences shown in Figs. 5.10-2 to 5.10-4 is performed. Time T3 = 60 s (design guideline).

Fig. 5.10-1 Basic Sequence for Parent Router Warm Start (Case 1)

T3 T3

ECHONET node
(parent router)

Message (1): Net ID read request

(General broadcast within the subnet)

Message (2): Net ID read response
(broadcast within the subnet)

(broadcast within the domain)
Message (3):Instance change class announcement

Begin normal operation
When there are 9 or more instance
change classes, a number of messages
(3) will be generated. (See 9.11.1 [14].)

Note: When a warm start is performed, with no existing
routers, in order to prevent unnecessary device
address resetup, it is recommended that no Net ID
write process be performed if Net ID information
identical with the already retained information is
obtained through Net ID information collection
from nodes in the subnet.

Temporarily halted due, for
instance, to a power failure

Reconnection to ECHONET

 5-17

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Message (1) ・Sets value that is retained as SEA. ・Stipulates intra-subnet general broadcast (0x01FF) with DEA.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates Net ID property (0xE1) with EPC. ・Stipulates read request (0x62) with ESV.

Message (2), (4), (6) Response messages for messages (1), (3), and (5), respectively.
Message (3) ・Sets own SEA value with SEA. ・Stipulates intra-domain general broadcast (0x00FF) with DEA.

・Stipulates intra-subnet general broadcast (0x01FF) with DEA.
・Stipulates parent router data property (0xE3) with EPC. ・Stipulates read request (0x62) with ESV.

Message (5) ・Sets own SEA value with SEA. ・Stipulates intra-domain general broadcast (0x00FF) with DEA.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates all router data property (0xE4) with EPC. ・Stipulates read request (0x62) with ESV.

Message (7) ・Stipulates intra-domain general broadcast (0x00FF) with DEA.
・Stipulates node profile object (0x0EF001) with SEOJ.
・Stipulates instance change class announcement property (0xD5) with EPC.
・Stipulates status notification (0x73) with ESV.

T3 Timeout in the wait for Net ID/parent router data read response reception from another router. Time T3 = 60 s
(design guideline).

T4 Timeout in the wait for all router data read response reception from another router. Time T4 = 60 s (design
guideline).

Fig. 5.10-2 Basic Sequence for Parent Router Warm Start (Cases 2 and 3)

T4

 ・・・・・

ECHONET node
(parent router)

Temporarily halted due, for
instance, to a power failure

Reconnection to ECHONET
Message (1): Net ID read request
(General broadcast within the subnet)

Message (2): Net ID read response

Message (3): Parent router data read request

Message (4): Parent router data read response

Message (5): All router data read request

Message (6): All router data read response

Message (6): All router data read response

(Individual or intra-subnet general broadcast)

Within T3

Within T3

Parent router data
confirmation

(Intra-domain general broadcast)

Note: When the existence of another
parent router is confirmed, the
parent router functions stop (the
subnet repair or like process
will not be performed).
(CASE4)

Subnet repair process

(broadcast within the domain)

Begin normal operation When there are 9 or more instance
change classes, a number of messages
(3) will be generated. (See 9.11.1 [14].)

Message (7):Instance change class announcement

 5-18

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.4.3 Basic Sequence for Normal Router Cold Start

The normal router cold-starts when it is newly connected or when it replaces an existing one.
When Net IDs are already assigned to all of two or more subnets to be routed, the startup of the router
functions must be avoided to prevent a loop from being formed by intra-domain message transmission.
However, when an existing normal router is replaced, Net IDs are already assigned to all the
connected subnets.

Within each connected subject, the normal router performs a startup process, which differs from
the startup process of a normal node. The conditions for allowing the normal router to perform normal
operations vary depending on whether the normal router becomes newly connected or replaces
another. The conditions are stated below:

(1) Conditions for the participation of a new normal router

1) One master router exists in subnets that are connected by the router to be cold-started
(hereinafter referred to as the "target router").

2) No other router exists in at least one subnet connected by the target router. No Net ID is
assigned to such a subnet.

3) Router data (the router ID information and the Net ID information about the newly
connected subnet) and all router data can be acquired from the parent router.

(2) Conditions for replacing an existing normal router
1) One master router exists in subnets connected by the target router.
2) Net IDs are assigned to all subnets connected by the target router.
3) Router data (the router ID information and the Net ID information about the connected

subnets) and all router data can be acquired from the parent router.

Table 5-1 shows five cases that may be encountered when the normal router attempts to perform a

cold start. Fig. 5.13 shows the normal router cold start basic sequence to be performed in Cases 4 and
5 on the presumption that the normal router is connected to two subnets.

Table 5-1 Cases That May Be Encountered at a Normal Router Cold Start

CASE Number of detected

master routers
Communication with

parent router
Net ID assignments to

connected subnets Process

1 2 or more － － Not started as a router.
2 0 － － Not started as a router.
3 Impossible － Not started as a router.
4 Assigned to all subnets. Started as a replacement router.
5

1
Possible

Assigned to one subnet. Started as a router.
Note: The "-" mark indicates any situation.

 5-19

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fig. 5.13 Basic Sequence for Normal Router Cold Start (1/2)

T3

T3

電文(3)：NetID情報読出要求

New startup ECHONET router

Internal initial processing /
Node ID setting complete

Subnet A
(Master router exists)

Subnet B

Exchange with all routers
Reconnection to ECHONET

Message (1): Master router data read request

Message (2): Master router data read response

(Intra-subnet general broadcast)

Message (3): Net ID information read request

Message (4): Net ID information read response

Message (1): Master router data read request

Exchange with all nodes Master router data confirmation

Subnet configuration confirmation

Note 1

(Intra-subnet general broadcast)

Note 2

Message (2): Master router data read response

Exchange with all routers

Note 3 Message (7): Register request router EA write request

Message (8): Router data write request

Message (9): Router data write response

Message (10): All router data write request

Message (11): All router data write response

Router data setting complete

Exchange with parent router

Note 4

Message (12): Net ID write request

(Intra-subnet general broadcast)

Message (13): Subnet B instance change class announcement
Message (13): Subnet A instance change class announcement

Begin normal operation
 (General broadcast within the domain)
When there are 9 or more instance change classes,
a number of messages (9) will be generated. (See
9.11.1 [14].)

 (General broadcast within the domain)
When there are 9 or more instance change classes,
a number of messages (9) will be generated. (See
9.11.1 [14].)

Notes:
1) When the number of master routers is 0 or 2 or more, the

general node startup process is performed (the subsequent
processing sequence needs not be performed).

2) When Net IDs are assigned to all subnets, the connected
subnet configuration is determined because there is a
possibility of replacement.

3) The EDT is configured in accordance with the collected
subnet information.

4) When "non-startup" is stipulated by a router data write
request, the normal node startup process is performed
without activating the router functions.

(Intra-subnet general broadcast)

Exchange with master router

Message (6): Parent router data read response

Message (5): Parent router data read request

T3

 5-20

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Message (1) ・Sets retained own SEA value as SEA. ・Stipulates intra-subnet general broadcast with DEA.

・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates master router data property (0xE6) with EPC. ・Stipulates read request (0x62) with ESV.

Message (3) ・Stipulates SEA by setting Net ID of retained own EA to 0x00.
・Stipulates intra-subnet general broadcast with DEA.
・Stipulates node profile object (0x0EF001) with DEOJ.
・Stipulates Net ID property (0xE1) with EPC. ・Stipulates notification request (0x63) with ESV.

Message (5) ・Stipulates master router with DEA.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates master router EA property (0xE3) with EPC. ・Stipulates read request (0x62) with ESV.

Message (7) ・Sets the subnet A EA value with SEA. ・Stipulates parent router with DEA.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates registration request router property (0xE6) with EPC.
・Stipulates write request (0x60) with ESV.

Message (8) ・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates own router data property (0xE0) with EPC. ・Stipulates write request (0x61) with ESV.

Message (10) ・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates all router data property (0xE4) with EPC. ・Stipulates write request (0x61) with ESV.

Message (12) ・Sets subnet B EA value with SEA.
・Stipulates intra-subnet general broadcast (0x01FF) with DEA.
・Stipulates node profile object (0x0EF001) with DEOJ.
・Stipulates Net ID property (0xE1) with EPC. ・Stipulates write request (0x60) with ESV.

Message (13) ・Sets subnet B EA value with SEA. ・Stipulates intra-domain general broadcast with DEA.
・Stipulates node profile object (0x0EF001) with DEOJ.
・Stipulates instance change class announcement property (0xD5) with EPC.
・Stipulates notification (0x73) with ESV.

Message (2), (4),
(6), (8), (9), (11)

Response messages for messages (1), (3), (5), (8), (10),respectively.

Fig. 5.13 Basic Sequence for Normal Router Cold Start (2/2)

 5-21

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.4.4 Basic Sequence for Normal Router Warm Start

It is assumed that the normal router warm-starts when the entire power supply to a domain is shut
off due, for instance, to a power failure. The situation arising when the normal router attempts to
warm-start depends on a number of factors, such as master router detection. However, it can be
roughly divided into ten cases, as indicated in Table 5-2. The processes performed in these cases can
be classified into types A through D, which are explained below.

When a warm start is performed, the routing function is temporarily stopped until the process is
completed (until the normal operation state prevails).

Table 5-2 Cases That May Be Encountered at a Normal Router Warm Start

CASE Number of detected

master routers
Communication
with parent router

Master router
data

All router data
from master router

Connected subnet
information Process

1 2 or more - - - - ×(D)
2 - - - Same Operation (A)
3

0
 - - - Different (all nodes

different)
×(E)

4 Same Operation (A)
5

Same
Different (all nodes
different)

×(E)

6

Same

Different - ×(E)
7

Impossible

Different - - ×(E)
8 Same Operation (B)
9

Same -
Different (all nodes
different)

Operation (C)

10

1

Possible

Different - - Operation (C)
Note: The "-" mark indicates any situation.

Process A Startup will be achieved with the information retained before the warm start.
Process B or C The parent router will be asked to reassign router data. Startup will be achieved

with the information acquired from the parent router.
Process D The router functions will not be activated. A cold start will be performed.

Regarding abnormality notification and transition to the temporary halt state, etc.,
router product specifications will be complied with.

Process E The router functions will not be activated. Startup will be achieved with only the
node function activated. (In this case, the router functions stop. Therefore, it is
recommended that the router issue a definite abnormality notification.)

Fig. 5.14 shows the normal router warm start basic sequence to be followed when process B or C

is performed as indicated above, on the presumption that the normal router is connected to two
subnets.

 5-22

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fig. 5.14 Basic Sequence for Normal Router Warm Start (1/2)

T3

T3

T3

T3

ECHONET router

Subnet A
(Master router exists)

Subnet B

Exchange with all routers
Reconnection to ECHONET

Message (1): Master router data read request

Message (2): Master router data read response

Message (1): Master router data read request

Exchange with all nodes Master router data confirmation
Note 1

Message (2): Master router data read response

Exchange with all routers

(Intra-subnet general broadcast)
(Intra-subnet general broadcast)

Message (3): Net ID information read request

Message (4): Net ID information read response

Subnet configuration confirmation

(Intra-subnet general broadcast)

Note 2

Temporarily halted due to a
power failure, etc.

Exchange with master router

Message (5): Parent router data read request

Message (6): Parent router data read response

Message (7): All router data read request

Message (8): All router data read response

Exchange with master router

All router data confirmation

Note 4 Message (9): Register request router EA write request

Message (10): Router data write request

Message (11): Router data write response

Message (12): All router data write request

Message (13): All router data write response

Router data setting complete Note 5

Message (14): Net ID write request

(Intra-subnet general broadcast)

Message (15): Subnet B instance change class announcement Message (15): Subnet A instance change class announcement

Begin normal operation
 (General broadcast within the domain)
When there are 9 or more instance change classes,
a number of messages (9) will be generated. (See
9.11.1 [14].)

 (General broadcast within the domain)
When there are 9 or more instance change classes,
a number of messages (9) will be generated. (See
9.11.1 [14].)

Notes:
1) When the number of master routers is 2 or

more, the router function is not activated (the
subsequent processing sequence needs not be
performed).

2) When the number of master routers is 0 and the
retained subnet configuration is different from
the confirmed subnet configuration, the router
function is not activated (the subsequent
processing sequence needs not be performed).

3) When a parent router is not existed, all router
information is obtained from the master router.
When its information accords with the retained
information and the configuration obtained at
subnet configuration confirmation, the router
function is activated with the retained
information (the subsequent processing
sequence needs not be performed). When these
three differ, the router function is not activated
(the subsequent processing sequence needs not
be performed).

4) Messages are configured with the subnet
information obtained at the subnet
configuration confirmation and the retained
router ID information.

Note 3 Exchange with parent router

 5-23

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Message (1) ・Sets retained own SEA value as SEA. ・Stipulates intra-subnet general broadcast with DEA.

・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates master router data property (0xE6) with EPC. ・Stipulates read request (0x62) with ESV.

Message (3) ・Stipulates SEA by setting Net ID of retained own EA to 0x00.
・Stipulates intra-subnet general broadcast with DEA.
・Stipulates node profile object (0x0EF001) with DEOJ.
・Stipulates Net ID property (0xE1) with EPC. ・Stipulates notification request (0x63) with ESV.

Message (5) ・Stipulates master router with DEA.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates master router EA property (0xE3) with EPC. ・Stipulates read request (0x62) with ESV.

Message (7) ・Stipulates master router with DEA.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates all router data property (0xE4) with EPC. ・Stipulates read request (0x62) with ESV.

Message (9) ・Sets the subnet A EA value with SEA. ・Stipulates parent router with DEA.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates registration request router property (0xE6) with EPC.
・Stipulates write request (0x60) with ESV.

Message (10) ・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates own router data property (0xE0) with EPC. ・Stipulates write request (0x61) with ESV.

Message (12) ・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates all router data property (0xE4) with EPC. ・Stipulates write request (0x61) with ESV.

Message (14) ・Sets subnet B EA value with SEA.
・Stipulates intra-subnet general broadcast (0x01FF) with DEA.
・Stipulates node profile object (0x0EF001) with DEOJ.
・Stipulates Net ID property (0xE1) with EPC. ・Stipulates write request (0x60) with ESV.

Message (15) ・Sets subnet B EA value with SEA. ・Stipulates intra-domain general broadcast with DEA.
・Stipulates node profile object (0x0EF001) with DEOJ.
・Stipulates instance change class announcement property (0xD5) with EPC.
・Stipulates notification (0x73) with ESV.

Message (2), (4),
(6), (8), (11), (13)

Response messages for messages (1), (3), (5), (7), (10), and (12), respectively.

Fig. 5.14 Basic Sequence for Normal Router Warm Start (2/2)

 5-24

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.5 Basic Sequence for ECHONET Node Normal Operation

During normal operation, the ECHONET node performs the sequence described in Section 5.2
Basic Sequence for Object Control. To prevent system operating errors, the following special
sequences are specified for processing by the ECHONET Communication Middleware.

(1) Basic sequence for ECHONET Address(EA) duplicate detection
(2) Basic sequence for detecting nodes with bad Net Ids
(3) Basic sequence for Net ID resetup

The basic sequences stated in this section relate to all nodes. Processing also covers ECHONET

nodes whose Net IDs are within the range open to users (0x90 to 0xFF).

5.5.1 Basic Sequence for Detecting EA Duplication

The following types of ECHONET address (EA) duplication are considered:

① Duplicate NodeID setting within the subnet (this means MAC address duplication)
② Duplicate Net ID setting

Case ① could occur during a warm start or when an ECHONET node is powered on and moved

to another subnet. Here, communication itself would be impossible because an error would be
detected in the lower-layer transmission media. Therefore, the communications sequence for detecting
EA duplication will not be specified. For devices capable of warm starts, however, ECHONET
Communication Middleware saves the duplicated EA. Therefore, application software designers
should take this into account.

Case ② could occur in either of the two situations described for Case ① and also when an EA
is manually set. In the latter case, communications over the lower-layer transmission media would be
possible as long as there is no duplication of MAC addresses. Therefore, the following sub-cases are
presented. In the first case, router functions are specified and manual setting of Net IDs for the router
subnets is not permitted. (Note, however, that manual setting of ECHONET node EAs is not
specified.) In the second case, methods for avoiding the problem in the node will be specified in
Section 5.5.2, “Basic Sequence for Detecting Nodes with Bad Net IDs”.
・ Subnets with the same Net ID exist within the same domain, causing duplication of Net IDs.
・ Subnet has a (duplicate) Net ID that is the same as that of another subnet in a domain having

a different NetID. Consequently, there is no duplication of MAC addresses within the subnet,
allowing communications over the transmission media.

 5-25

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.5.2 Basic Sequence for Detecting Nodes with Bad Net IDs

One Net ID is set for each subnet, and its value is unique within the domain. In the two cases listed
below, a device having a Net ID different from the set Net ID could exist within the subnet.

① A device active in another subnet was moved into the current subnet.
② There exists a device currently performing startup processing within the subnet for which a Net
ID has been assigned.

In Case ②, the device does not become operative until the router properly assigns the Net ID in

the startup sequence, so there is no need to specify a new sequence. In Case (1), when an improper
Net ID is detected, the received message is discarded even when the DEA is intended for the node’s
self-EA in order to prevent a system error. A Net ID error is detected when the hop count for the
received message is 0 and the Net ID value of the received message SEA differs from the Net ID
value of the node’s self-EA (Fig. 5.15). However, messages from the SEA having a Net ID setting of
0x00 will be processed in compliance with special specifications regardless of whether the hop count
is 0.

For ECHONET devices that operate while moving from one subnet to another without turning
OFF the power, applications should be designed on the presumption that no response might be
returned in the following sequence.

For a router, however, a response will be returned in response to a message concerning a router
profile property read request, even if the hop count is 0 and the received message SEA's Net ID value
differs from the Net ID retained by the router. Here, the Net ID value for the SEA in the response
message is 0x00.
Here,

Message (1) ・A hop count is 0.
・SEA Net ID differs from node's own Net ID (except when Net ID = 0x00).
・DEA specifies destination ECHONET node (regardless of individual/broadcast).
・EOJ, EPC, and ESV are optional.

Fig. 5.15 Basic Sequence for Detecting Bad Node Net ID

ECHONET node

Message (1)

 (Message having a hop count of 0
and an EA Net ID value different
from the SEA Net ID value)

~

Discard received message

~

 5-26

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

5.5.3 Basic Sequence for Net ID Write Request Reception

Only the master router is permitted to issue a node Net ID write request when the target node is not
a router. The master router accepts write requests only when they are issued by the parent router. The
parent router does not accept write requests from the other routers. Also, note that routers other the
master router accept write requests only when they are issued by the master router.

When a node other than a router receives a Net ID write request, it basically performs the
processing sequence shown in Fig. 5.16. However, it can perform a cold start or perform a warm start
while handling the written Net ID as the own EA Net ID.

When a router other than the master router receives a Net ID write request, it stops and then
performs a warm start process. The basic sequence for such an operation is shown in Fig. 5.17.

Message (1) ・SEA for Net ID = 0x00 or the same Net ID as for the target node.
・Stipulates node profile object (0x0EF001) with DEOJ.
・Stipulates router profile object (0x0EF101) with SEOJ.
・Stipulates Net ID property (0xE1) with EPC.
・Stipulates write request (0x60) with ESV.

Message (2) ・Stipulates intra-domain general broadcast (0x00FF) with DEA.
・Stipulates node profile object (0x0EF001) with SEOJ.
・Nothing is stipulated with DEOJ.
・Stipulates instance change class announcement property (0xD5) with EPC.
・Stipulates notification (0x73) with ESV.

Fig. 5.16 Basic Sequence for ECHONET Node Net ID Setting Change

 (Intra-domain general broadcast)
When there are 9 or more instance change classes, a number
of messages (2) will be generated (see Section 9.11.1 (14)).

ECHONET node

Normal operation state

Message (1): Net ID write request

Net ID and own EA setup (Net ID
setup).
The Node ID of message (1) SEA
and the EA based on the Net ID
value stipulated by a write request
are set as default router data.

Note: When the Net ID value stipulated by
a write request is equal to the previously
owned Net ID value, the default router
settings are changed without transmitting
message (2).

Message (2): Instance change class announcement

 5-27

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

T3

T3

T3

ECHONET normal router

Subnet A (other router (master router) existing) Subnet B

Message (1): Net ID write request

Subnet A Net ID temporary setting
Note: The router functions are

deactivated during a Net ID
resetup process.

Note: The source EA of message (1)

depends on the Node ID
value for message (1) SEA
and the Net ID value
stipulated by the write
request.

Note: The Net ID information is

rewritten when the message
(8) and preceding processes
are completed. If the
processes are not completed,
a warm start process is
performed.

Setting message (1) source EA as
default router data temporarily

Exchange with temporary default router

Message (2): Parent router data read request

Message (3): Parent router data read response

Parent router data setting complete

Message (4): Register request router EA write request

Message (5): Router data write request

Message (6): Router data write response

Message (7): All router data write request

Message (8): All router data write response

Exchange with parent router

Net ID information resetup complete

Begin normal operation

Message (8): Net ID write request
(General broadcast within the subnet)

Message (9): Subnet B instance change class announcement

 (General broadcast within the domain)
When there are 9 or more instance change classes, a number of
messages (3) will be generated. (See 9.11.1 [15].)

 5-28

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
5 Basic Sequences

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Message (1) ・SEA Net ID = 0x00 or the same Net ID as for the target node.

・Stipulates node profile object (0x0EF001) with DEOJ.
・Stipulates Net ID property (0xE1) with EPC. ・Stipulates write request (0x60) with ESV.

Message (2) ・Sets EA with SEA in such a manner that message (1) Net ID is used as subnet A EA Net ID.
・Stipulates default router with DEA in such a manner that message (1) SEA Net ID is changed to message

(1) EDT value.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates parent router data property (0xE3) with EPC.
・Stipulates read request (0x62) with ESV.

Messages (3), (6), (8) Response messages for (2), (5), and (7), respectively.
Message (4) ・Sets EA with SEA in such a manner that message (1) Net ID is used as subnet A EA Net ID.

・Stipulates parent router with DEA.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates registration request router property (0xE6) with EPC.
・Stipulates write request (0x60) with ESV.

Message (5) ・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates router EA property (0xE0) with EPC.・Stipulates write request (0x61) with ESV.

Message (7) ・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates all router data property (0xE4) with EPC.・Stipulates write request (0x61) with ESV.

Message (9) ・Sets subnet B EA value with SEA.・Stipulates general broadcast within subnet (0x01FF) with DEA.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates Net ID properties (0xE1) with EPC.・Stipulates write request (0x60) with ESV.

Message (10) ・Sets subnet B EA value with SEA. ・Stipulates default router with DEA.
・Stipulates router profile object (0x0EF101) with DEOJ.
・Stipulates instance change class announcement property (0xD5) with EPC.・Stipulates notification
announcement (0x73) with ESV.

Ｔ3 Timeout waiting for messages (3), (5), and (7). If the specified message is not received within this time, router
functions will not start up. Time T3 (design guideline: 60sec).

Fig. 5.17 Basic Sequence for ECHONET Router Net ID Setting Change

 6-1

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
6 ECHONET Communications Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Chapter6 ECHONET Communications Processing Block Processing
Specifications

6.1 Basic Concept

This section will present processing specifications for ECHONET communications processing in
the ECHONET Communication Middleware as shown in the Fig. below. Note that the processes
shown in the Fig. are used simply to describe basic processing in the ECHONET Communications
Processing Block and are not intended as specifications for actual software structure.

 (1) Received message judgment processing
 (2) Routing processing
 (3) Object processing
 (4) Basic API processing
 (5) Send message assembly and management processing
 (6) Startup processing

Fig. 6.1 Overview of Communication Middleware Processing (Layer Configuration)

Basic API

Profile objects

Device objects

ECHONET communications
definition objects

Lower-Layer communications

software block

Lower-Layer communications

software block

EMS application Refrigerator application A/C application Application
Software Block

Routing

Received message
judgment

Object process

Basic API process

ECHONET
Communications
Processing Block

Protocol Difference Absorption
Processing Block

Common lower-layer
communications interface process

Address conversion

Conversion by
communication type

Message splitting and transmission
Message receipt and

assembly

Common Lower-Layer Communications Interface

Individual lower-layer communications interface

Startup

Send message creation
and management

･Node ID and MAC address mapping
data table
･Conversion by communication type
(broadcast) table
･Lower-Layer communications
software block buffer size

Service objects

 6-2

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
6 ECHONET Communications Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

6.2 Received Message Determination Processing Specifications

Confirms the intended recipient of the message received from the Common Lower-Layer
Communication Interface. Except for processing of message detection1 from a node with a bad Net ID,
processing differs for ECHONET routers and other devices. The two cases will be described below.
Note that the value of the node’s self-EA and that of its subnet Net ID are held as node profile class
properties within the profile object.

(1) Received message determination processing when device is not an ECHONET router

All messages determined as not being addressed to the device’s self-EA (including broadcast
messages) are discarded. When a message is determined to be addressed to the device, received
message processing is handed off to object processing.

(2) Received message determination processing when device is an ECHONET router
For ECHONET routers, the intended recipient of the received message is confirmed (using
EHD and DEA data), and received message processing is handed off only to routing processing
in the following cases:
・ When the message is stipulated individual and the DEA does not match the router’s self-EA

and the DEA Net ID does not match the Net ID of the router’s EA.
・ When the message is stipulated broadcast and the DEA stipulates broadcast to a subnet

other than the router’s own subnet.
In the following case, received message processing is handed off to both routing processing and
object processing.
・ When the message is stipulated broadcast and the DEA stipulates broadcast to the router’s

own subnet and to another subnet.
Finally, object received message processing is handed off only to object processing in the
following cases:
・ When the message is stipulated individual and the DEA does not match the router’s EA.
・ When the message is stipulated broadcast and the DEA stipulates broadcast to the router’s

own subnet.
In all other cases, the received message is discarded and processing is terminated.

Note: When the received message EHD and SEA values are confirmed and the SEA Net ID does
not match the Net ID of the router’s EA despite an EHD routing hop count of 0, the
received message is determined to originate from a node with a bad Net ID and discarded.

 6-3

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
6 ECHONET Communications Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

6.3 Routing Processing Specifications

Processing specifications for routing processing differ depending on the specific combination of
two variables: “received message processing / send message processing” and “router processing /
non-router device processing.” This section will focus on the former pair, with specifications for the
latter provided therein. Data used in routing processing is held as property data in the “node profile
class” and “router profile class” of the profile object.

6.3.1 Received Message Routing Processing Specifications

(1) Routing processing specifications for non-router devices

Processing is not handed off from received message processing to routing processing (no
processing).

(2) Routing processing specifications for routers
The hop count of the EHD of the message handed off by received message processing is
confirmed, and if the count is at maximum (i.e., count=7), the message is discarded and processing
terminated.
If the count is not at maximum, router determination processing1 is performed, the EHD hop count
is incremented by 1, a subnet other than that from which the message was received is stipulated
(i.e., a subnet determined by routing route determination processing), intended recipient data for
within the subnet (“broadcast/individual” and “Node ID data”) are stipulated,2 processing of the
received message is handed off to the Protocol Difference Absorption Processing Block via the
Common Lower-Layer Communication Interface as a send message, and processing within the
ECHONET Communications Processing Block is terminated. When router determination
processing produces a “not deliverable” result, the received message is discarded and processing
terminated.

6.3.2 Send Message Routing Processing Specifications

Two types of non-router send message routing processing will be specified: simple processing and
advanced processing. The decision of which type of processing to implement is optional (the only
requirement is that one of the two be implemented).

(1) Routing processing specifications for non-router nodes <Simple processing>

All messages to other subnets are handed off to the default router.
Specifically, default router Node ID data is stipulated as the intended recipient data within the
subnet; processing is handed off, together with the send message, to the Protocol Difference
Absorption Processing Block via the Common Lower-Layer Communication Interface; and
processing within the ECHONET Communications Processing Block is terminated.

 6-4

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
6 ECHONET Communications Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(2) Routing processing specifications for non-router nodes <Advanced processing>
Appropriate router determination processing1 is performed. For messages determined to be
deliverable, Node ID for the appropriate router is stipulated;2 processing is handed off, together
with the send message, to the Protocol Difference Absorption Processing Block via the Common
Lower-Layer Communication Interface; and processing within the ECHONET Communications
Processing Block is terminated. Messages determined to be undeliverable are discarded rather than
being processed, and processing within the ECHONET Communications Processing Block is
terminated.
This requires that all router data be obtained in advance from the router.

(3) Routing processing specifications for routers
Appropriate router determination processing1 is performed. For messages determined to be
deliverable, the appropriate subnet and router are stipulated,2 intended recipient information within
the subnet (“broadcast/individual” and “Node ID data”) are stipulated,2 processing of the send
message is handed off to the Protocol Difference Absorption Processing Block via the Common
Lower-Layer Communication Interface, and processing within the ECHONET Communications
Processing Block is terminated. When the appropriate router determination processing produces a
“not deliverable” result, the message is discarded and processing terminated.

Notes: 1) The appropriate router is determined from all router data for the domain. Specific route
determination and determination methods are not specified.

2) A route to the intended recipient is selected based on all router data for the domain, the
direct transmission router is determined, and the router Node ID is set to the Node ID of
the node that will deliver the message to the Protocol Difference Absorption Processing
Block.

 6-5

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
6 ECHONET Communications Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

6.4 Object Processing Specifications

In the ECHONET Communications Processing Block, device functions are expressed as objects,
and through these objects operations are performed between nodes. See Chapter 9 and the
APPENDIX for detailed information on objects.

Object processing can be divided into the three main categories shown below on the basis of
conditions required for startup:

(1) Data (reference/control content) is received from basic API processing, and the stipulated

object property is controlled.
(2) Received message data is received from received message determination processing, and the

stipulated object property is controlled.
(3) The action specified in the object property is managed, and the stipulated object property is

controlled based on elapsed time, etc.

(1) through (3) above are designated as object processing (1)–(3), and processing specifications for
each are provided below.

6.4.1 Object Processing (1)

Processing using operation data (reference/control content) from basic API processing can be

divided into two main categories: current device object1 processing and other device object2
processing. Object processing (1) uses data for all objects. When data is received from the basic API,
the block first determines which type of object the data concerns and then performs the appropriate
processing. Processing specifications for the two categories are presented below.

Notes: 1) Objects corresponding to functions that are actually present on the self-node. Includes communications

definition objects, profile objects, and device objects. Can be referenced and controlled from other nodes.
 2) Objects corresponding to functions not present in the self-node and designed to control the status of other

nodes. Includes communications definition objects, profile objects, and device objects.

(1) Current device object processing specifications
When the data (reference/control content) is received from basic API processing and the stipulated
object and property exist, processing is performed in accordance with the request stipulated in basic
API processing.

(2) Other device object processing specifications
The data (reference/control content) is received from the basic API processing, the stipulated object
and property data and intended recipient EA data are handed off to send message
assembly/management processing, and processing is terminated.

 6-6

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
6 ECHONET Communications Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

6.4.2 Object Processing (2)

Processing based on received message data from received message judgment processing can also
be divided into two categories: current device object1 management and other device object2
management. In object processing (2), which controls the stipulated object property, when received
message data is received from received message judgment processing, the block first decides which
type of object the data concerns and then performs the appropriate processing. Processing
specifications for the two categories are presented below.

Notes: 1) Objects corresponding to functions that are actually present on the self-node. Includes communications

definition objects, profile objects, and device objects. Can be referenced and controlled from other nodes.
 2) Objects corresponding to functions not present in the self-node and designed to control and manage the

status of other nodes. Includes communications definition objects, profile objects, and device objects.
Cannot be accessed or controlled (i.e., cannot be seen) from other nodes.

(1) Current object management processing specifications

Received message data is received from received message judgment processing, and processing is
performed in accordance with the request stipulated in the ECHONET service (ESV).

(2) Other object management processing specifications
When received message data is received from received message judgment processing, and when
the stipulated ESV indicates a “request,” the received message is discarded and processing
terminated. If the stipulated ESV indicates a “response” or a “notification,” processing is
performed in accordance with the ESV.

6.4.3 Object Processing (3)

Periodic notification to the communications definition object is specified, and the data necessary

for periodic notification of the object’s stipulated property value is handed off to send message
assembly and processing. As long as there are objects for which periodic notification is specified,
processing, including time count processing, will continue.

Current object status is also monitored, and when a change is detected the data necessary to create
a notifying API is handed off to basic API processing (startup processing completion notification,
etc.).

 6-7

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
6 ECHONET Communications Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

6.5 Basic API Processing

Provides application software with basic APIs. Basic APIs enable reception of control (read/write)

request data and settings from application software, and the data is then handed off to object
processing. Conversely, data is received from objects to be notified to application software, and the
application software is notified using a format specified in the basic API.

When content received from the application software was stipulated for initial processing,
processing is handed off to startup processing.

6.6 Send Message Creation/Management Processing

When the data necessary to create an ECHONET message is received from startup processing or

object processing, the data required for an ECHONET message, such as self-EA, ECHONET header
(EHD), and ECHONET byte counter (EBC), is added to create the message, and processing is then
handed off to routing processing.

6.7 Startup Processing

When processing begins, the Protocol Difference Absorption Processing Block and connected

lower-layer transmission media data required for setting the profile object are received via the
Common Lower-Layer Communication Interface and set to the given property of the object.

When internal processing is completed, the startup sequence processing specified in Chapter 5 is
performed, and the message data to be transmitted is handed off to send message
assembly/management processing. The system then waits for the required data to be written to the
object in line with the sequence and, if necessary, performs time-out management and sends the next
message to complete startup processing.

When startup processing is completed, the object property value indicating the status of the
Communications Middleware is set, and processing is terminated.

 6-8

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
6 ECHONET Communications Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

6.7.1 Node Startup Processing

Fig. 6.2 shows the ECHONET Communications Processing Block internal processing sequence

performed when the ECHONET Communications Processing Block is started from the basic API at
node startup to start lower-layer transmission media from the ECHONET Communications
Processing Block via the common lower-layer communication interface.

MidStart

Checking for ECHONET
communication processing

block EA retention

NodeID acquisition and confirmation
（ClcGetNodeID）

Lower-layer communication
software start （ClcReset）

Wait for Net ID reception
Communication stopped

Communication stop

Retained

Not
retained

Equal to EA

MidReset

Discarding EA of
ECHONET communication

processing block

Node ID acquisition
（ClcGetNodeID）

Wait for Net ID reception
Normal stop

Lower-layer communication
software forced-initialization
MAC discarded and acquired

House code data discarded and
acquired （ClcInitAll）

Not equal to
NetID

Forced-initialization
successful

Start failure

Forced-
initialization

failure

Lower-layer communication
software operation start
（ClcRequestRun）

Lower-layer communication
software operation start
（ClcRequestRun）

Node ID acquisition
（ClcGetNodeID）

Stop

Warm start
EA continuation

Cold start (3)
EA reacquisition

Cold start (1)
MAC reacquisition

House code data reacquisition

Cold start (2)
MAC reacquisition

Lower-layer communication
software initialization

MAC discarded and acquired
（ClcInit）

Node ID acquisition
（ClcGetNodeID）

MidInit MidInitAll

Initialization
successful

Initialization
failure

Net ID rewrite

Net ID acquired

Stop Stop

Rewrite ECHONET communication
processing block Node ID

Lower-layer communication
software start （ClcReset）

Operation start completeOperation start complete

Equal to EA

Not equal
to EA

Start
failure

Start
failure

Start successfulStart successful

Fig. 6.2 ECHONET Communications Processing Block Internal Processing Sequence for Node
Startup

 6-9

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
6 ECHONET Communications Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

6.8 Description of Processing Functions

Table 6-1 shows a list of the functions processed in the ECHONET Communications Processing
Block, together with implementation status. The “implementation status” column indicates whether
the given function is required, with N specifying normal (non-router) nodes and R, routers. The
function numbers shown in the first column are used as symbols when presenting the processing
functions of the ECHONET Communications Processing Block. (For example, “M1a2bcde” would
indicate six functions shown in Table 6-1: M1a, M2b, M2c, M2d, and M2e.)

Table 6-1 List of ECHONET Communications Processing Block Functions (1/4)
Functions Function

No. (overview)
Implementa-ti

on Status Remarks

Detection of nodes with bad Net ID processing M1 a
Processing functions in Section 5.5.2

Required
(N+R)

Processing of basic sequence for object control in
general

a

Processing functions in Section 5.2

Required
(N+R)

Set processing b
Processing functions in Section 4.2.8 (1). Returns
“response.”

Get processing c
Processing functions in Section 4.2.8 (2). Returns
process response.

 Property value notification processing d
Processing functions in Section 4.2.8 (3). Returns
“response” and sends “autonomous notification.”

Required
(N+R)

Required because node
profile class must be
implemented. Differs
from services that must
be processed for each
property (i.e., not
required for all
properties).

SetM processing e
Processing functions in Section 4.2.8 (4). Returns
“response.”

GetM processing f
Processing functions in Section 4.2.8 (5). Returns
“response.”

Array element notification processing g
Processing functions in Section 4.2.8 (6). Returns
“response” and sends “autonomous notification.”

AddM processing

M2

h
Processing functions in Section 4.2.8 (7). Returns
“response.”

 6-10

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
6 ECHONET Communications Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 6-1 List of ECHONET Communications Processing Block Functions (2/4)

Functions Function
No. (overview)

Implementa-ti
on Status Remarks

DelM processing i
Processing functions in Section 4.2.8 (8). Returns
“response.”

CheckM processing j
Processing functions in Section 4.2.8 (9). Returns
“response.”

AddMS processing k
Processing functions in Section 4.2.8 (9). Returns
“response.”

Communications definition object management processing
(1)

l

Processes communications definition object of status
change notification stipulation indicated in Section 9.13.

Communications definition object management processing
(2)

m

Processes communications definition object of periodic
communications stipulation indicated in Section 9.13.

Communications definition object management processing
(3)

n

Processes communications definition object of set control
reception method stipulation indicated in Section 9.14.

Communications definition object management processing
(4)

o

Processes communications definition object of action
setting indicated in Section 9.15.

Communications definition object management processing
(5)

p

Processes communications definition object of trigger
setting indicated in Section 9.16.

Get processing expansion A
When a Get “request” is received, returns object property
value held in Communications Middleware.

GetM processing expansion B
When a Get “request” is received, returns object property
value held in Communications Middleware.

Property value notification processing expansion C
When a property value notification “request” is received,
returns object property value held in Communications
Middleware.

Array element notification processing expansion

M2

D
When an array element notification “request” is
received, returns object property value held in
Communications Middleware using
Communications Middleware.

 6-11

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
6 ECHONET Communications Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 6-1 List of ECHONET Communications Processing Block Functions (3/4)

Functions Function
No. (overview)

Implementa-ti
on Status Remarks

Other device object status management processing (1) E
When a “request” to read a property held as other
device objects is received, the property value of the
other device object held in Communications
Middleware is changed to the notified value.

Other device object status management processing (2) F
When a status notification for a property held as
other device objects is received, the property value
of the other device object held in Communications
Middleware is changed to the notified value.

Other device object status management processing (3) G
When a status announcement for or a “request” to
read a property not held as other device objects is
received, the received message is discarded.

Other device object status management processing (4) H
When a status announcement for or a “request” to
read a property not held as other device objects is
received, the received message is not discarded, and
the application is notified.

Current device object management processing (1) I
“Requests” of properties not held as current device
objects are not discarded, and the application is
notified.

Current device object management processing (2)

MO

J
When a “request” of properties held as current
device objects is received, a receipt response is
returned, and the application is notified of the
“request.”

 6-12

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
6 ECHONET Communications Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 6-1 List of ECHONET Communications Processing Block Functions (4/4)

Functions Function
No. (overview)

Implementa-ti
on Status Remarks

API processing (1) M3 a
Processing indicated in Section 6.5; required API processing
indicated in Level 1 of Part IV specifications

Required
(N+R)

API processing (2) b
Processing indicated in Section 6.5; required API processing
indicated in Level 1 of Part IV specifications

API processing (3) c
Processing indicated in Section 6.5; required API processing
indicated in Level 2 of Part IV specifications

Required
(N+R)

API processing (4) d
Processing indicated in Section 6.5; required API processing
indicated in Level 2 of Part IV specifications

Net ID server ａ
Parent router processing indicated in Sections5.4.2 and
5.4.3 (allocation of Net IDs to normal routers)

Required
(R)

Required only for parent
router.

Routing processing b
Routing processing indicated in Section 6.3

Required
(R)

Simple routing message processing ｃ
“Simple” routing processing for non-router nodes
indicated in Section 6.3.2

Required
(N)

Not required when node
has M3d function.

Advanced routing message processing

M4

ｄ
“Advanced” routing processing for non-router nodes
indicated in Section 6.3.2

Send message creation/management processing M5 a
Processing indicated in Section 6.6

Required
(N+R)

Detection of nodes with bad Net ID processing ａ
Processing indicated in Section 5.5.2

Required
(N+R)

Basic sequence for node cold start processing: non-router side b
Non-router-side processing indicated in Section 5.3.1

Required
(N+R)

When using the Net ID of
the range open to users,
only instance change class
announce is required
(N+R).

Basic sequence for node cold start processing: router side ｃ
Router-side processing indicated in Section 5.3.1 and
5.3.2

Required
(R)

Basic sequence for node warm start processing: non-router
side
ｄ

Non-router-side processing indicated in Section 5.3.2

Non-automatic Net ID acquisition

M6

ｅ
Setting of Net IDs for code range open to users, as
indicated in Section 2.3

 7-1

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
7 Protocol Difference Absorption Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Chapter7 Protocol Difference Absorption Processing Block Processing
Specifications

7.1 Basic Concept

This section will describe the processing specifications shown below which are to be specified by
the ECHONET Communications Processing Block in the Protocol Difference Absorption Processing
Block shown in the Fig. below. Note that the processes shown in the Fig. are used simply to describe
basic processing in the ECHONET Communications Processing Block and are not intended as
specifications for actual software structure.

（１） Message receipt/assembly processing
（２） Message splitting/transmission processing
（３） Address conversion processing
（４） Conversion by communications type processing
（５） Lower-Layer Common Lower-Layer Communication Interface processing

Fig. 7.1 Overview of Communication Middleware Block Processing (Layer Configuration Overview)

basic API

Common Lower-Layer Communication Interface

Profile object

Device object

ECHONET communications
definition object

Lower-Layer communications

Lower-Layer communications

 Individual lower-layer communications interface

EHS application Refrigerator application A/C application Application
Software Block

Common Lower-Layer
Communication Interface

ECHONET
Communications
Processing block

Protocol Difference Absorption
Processing Block

Address conversion

Conversion by
communication type

Message splitting and transmission Message receipt and
assembly

Routing

Received message
judgment

Objects process

Basic API process

Startup

Send message creation
and management

･Node ID and MAC address
mapping data table
･Conversion by communication
type (broadcast) table
･Lower-Layer communications
software block buffer size

Service object

7-2

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
7 Protocol Difference Absorption Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

7.2 Message Receipt/Assembly Processing

A message is received from the Lower-layer Communications Software block via an individual
lower-layer communications interface. Depending on the message header (EDC) in the Protocol
Difference Absorption Processing Block, two types of processing are possible. Both are specified
below.

（１） When received message is a complete (not split) message
（２） When received message is a split message

7.2.1 Message Receipt/Assembly Processing (1)

When the received message is complete (not split), message data (ESDATA) in the Protocol

Difference Absorption Processing Block is handed off to Common Lower-Layer Communication
Interface processing as data to be forwarded to the ECHONET Communications Processing Block,
and processing is terminated.

7.2.2 Message Receipt/Assembly Processing (2)

When the received message is a split message, message assembly processing is performed in the
ECHONET Communications Processing Block using the received message, the MAC address of the
source, the message identification stipulator within the EDC, and the split message number, all of
which were received from the Lower-layer Communications Software. The received message is held
until the message is properly assembled. Once assembly is complete, the message is handed off to
Common Lower-Layer Communication Interface processing as data to be forwarded to the
ECHONET Communications Processing Block, and processing is terminated.

Such items as wait-time for the next message (required for assembly) and the number of messages
that can be processed simultaneously are not specified. Also, split message receiving functions are not
required.

MAC address data passed on from the Lower-layer Communications Software as an individual
lower-layer communications interface is used only for message assembly and does not require address
conversion processing.

7-3

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
7 Protocol Difference Absorption Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

7.3 Message Splitting/Transmission Processing

Lower-layer Communications Software type data, intended recipient MAC address, and
transmission data (ESDATA) are received from address conversion processing or communications
type conversion processing, and the size of the send message data (EHD-EDATA) is determined. Two
types of processing are possible, depending on whether the send message data is larger than the largest
size that can be sent at one time by the Lower-layer Communications Software block (hereafter
referred to as “transmission buffer size”):

(1) Send message length is smaller than transmission buffer size (splitting not required)
(2) Send message length is larger than transmission buffer size (splitting required)

7.3.1 Message Splitting/Transmission Processing (1)

When send message length is smaller than the transmission buffer size (splitting not required), an

EDC stipulating no splitting is created, send message data and MAC address data for the intended
recipient are handed off to the Lower-layer Communications Software block via the individual
lower-layer communications interface, and processing is terminated.

7.3.2 Message Splitting/Transmission Processing (2)

When send message length is larger than the transmission buffer size (splitting required), message

data is split into pieces of an appropriate size smaller than the transmission buffer size. These pieces,
designated ESDATA(1)–ESDATA(n), are then handed off in order to the Lower-layer
Communications Software block via the individual lower-layer communications interface, together
with an EDC for each (EDC[1]–EDC[n]) and the MAC address of the intended recipient, starting
with the first message. Once all messages have been handed off, processing is terminated.

The actual size and number of the split messages, and the decision of whether to incorporate
splitting functions, are implementation issues and therefore will not be specified.

7-4

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
7 Protocol Difference Absorption Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

7.4 Address Conversion Processing

Two types of processing are possible depending on the address data (consists of an ECHONET
header code and a Node ID code; detailed specifications are provided in Part V Lower-Layer
Common Lower-Layer Communication Interface Specifications) received together with the send
message from Common Lower-Layer Communication Interface processing:

 (1) When the address stipulates broadcast, processing is passed to communications type conversion

processing.
 (2) When the address stipulates individual, address conversion processing is performed for the

specified Node ID and MAC address for each lower-layer communications protocol, the
address is designated the intended recipient address, and processing is passed to message
splitting/transmission processing.

Node ID and MAC address conversion processing specifications for each lower-layer

communications protocol are described below.

As stated in the address specifications for lower-layer communication software in Part 3, the
number of available MAC addresses varies from one lower-layer communications protocol to another.
Further, a special MAC address use is defined by some lower-layer communications protocols. To
comply with two or more lower-layer communication software programs, the Node ID and MAC
address must be selected while giving due consideration to the aforementioned matter.

7.4.1 Address Conversion Specifications for Power Line Communications
Protocol

The MAC address is 2 bytes long, and the value of the lower byte is the same as the Node ID.

No. Object MAC address (HEX)
1 Plug-and-play manager address 40 00
2 Individual address 40 01

-
EF

3 General broadcast address 40 F0
4 Reserved for future use 40 F1

-
FE

5 Plug-and-play reserved 40 FF

7-5

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
7 Protocol Difference Absorption Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

7.4.2 Address Conversion Specifications for Low-power Wireless Protocol

 Since Node ID=MAC address, conversion is not required.

7.4.3 Address Conversion Specifications for Extended HBS Protocol

 Since Node ID=MAC address, conversion is not required.

7.4.4 Address Conversion Specifications for IrDA Control Protocol

IrDA Control conversion processing differs for host and peripheral.

(1) Host
Since the peripheral Node ID is a virtual MAC address (See Part III, Chapter 6 for the Node IDs of
peripherals managed by Lower-layer Communications Software), conversion is not required.

(2) Peripheral
Node ID of intended recipient is converted to MAC address of host, and message is sent to host.
(Message is sent from host to intended recipient peripheral.)

7.4.5 Address Conversion Specifications for LonTalk Protocol

Each node uses the Neuron chip Node ID (7-bit data) as its own MAC address. Therefore, the
converted 8-bit data value, with the MSB set to "0", is used as the Node ID.

7-6

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
7 Protocol Difference Absorption Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

7.5 Communications Type Conversion Processing

Broadcast addresses are converted based on the broadcast stipulated intended recipient data

received from address conversion processing (this consists of the ECHONET header code and the
code for Byte 2 of the DEA). Here, one of two types of processing is performed, based on whether
broadcast is stipulated in the lower-layer communications protocol:

 (1) When broadcast is stipulated in lower-layer communications protocol

The intended recipient stipulation data is converted in accordance with the lower-layer
communications protocol broadcast stipulation specifications. The broadcast stipulation data,
intended recipient address, and send message are handed off to message splitting/transmission
processing, and processing is terminated.

(2) When broadcast is not stipulated in lower-layer communications protocol
All transmission recipient MAC addresses are extracted, and the MAC address data (extracted
in order) and send message are handed off to message splitting/transmission processing until
transmission of the stipulated message to all MAC addresses has been completed. When the
requests intended for all MAC addresses have been handed off to message
splitting/transmission processing, processing is terminated.

Specifications for establishing broadcast address data using Byte 2 of DEA are described below for

each lower-layer communications protocol.

7.5.1 Communications Type Conversion Specifications for Power Line
Communications Protocol

When broadcast is stipulated by the ECHONET header, the code for Byte 2 of DEA is treated as

0xF0, and notification is performed by general broadcast.

7.5.2 Communications Type Conversion Specifications for Low-power
Wireless Protocol

Since the code for Byte 2 of DEA is the same as the MAC address for broadcast, conversion of the

broadcast address is not required. However, in addition to the address data, the broadcast stipulation
data must be notified to the Lower-layer Communications Software. The broadcast stipulation data,
the broadcast recipient addresses, and the send message are handed off to message
splitting/transmission processing, and processing is terminated.

7-7

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
7 Protocol Difference Absorption Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

7.5.3 Communications Type Conversion Specifications for Extended HBS
Protocol

Since the code for Byte 2 of DEA is the same as the MAC address for broadcast, conversion of the

broadcast address is not required. However, in addition to the address data, the broadcast stipulation
data must be notified to the Lower-layer Communications Software. The broadcast stipulation data,
the broadcast recipient addresses, and the send message are handed off to message
splitting/transmission processing, and processing is terminated.

7.5.4 Communications Type Conversion Specifications for IrDA Control
Protocol

IrDA Control conversion processing differs for host and peripheral.

(1) Host
Since Byte 2 of the peripheral DEA is a virtual MAC address (See Part III, Chapter 6 for the Node
IDs of peripherals managed by Lower-layer Communications Software), conversion is not
required.

(2) Peripheral
Byte 2 of intended recipient DEA is converted to MAC address of host, and message is sent to host.
(Message is sent from host to intended recipient peripheral.)

7.5.5 Communications Type Conversion Specifications for LonTalk
Protocol

Broadcast stipulation data, broadcast recipient addresses, and send message are handed off to

message splitting/transmission processing, and processing is terminated. Conversion to broadcast
address is performed by the Lower-layer Communications Software. Detailed specifications are
provided in Part III, Section 6.4.2. When the current subnet is not included in the broadcast list, the
router address (Byte 2 of DEA=MAC address) is specified as the intended recipient address. In all
other cases, the intended recipient address is set to NULL. The broadcast stipulation data is notified to
the Lower-Layer Communication Software.

7-8

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
7 Protocol Difference Absorption Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

7.6 Common Lower-Layer Communications Interface Processing

Provides Common Lower-Layer Communications Interface to ECHONET Communications
Processing Block. Settings and control request data (send messages, etc.) are received from
ECHONET Communications Processing Block via the Common lower-layer communications
interface. If data consists of send message data, it is handed off to address conversion processing; if
lower-layer communications block settings or data request data, it is handed off to the Lower-layer
Communications Software block via the individual lower-layer communications interface.

By contrast, when received message data is received from message receipt/assembly processing, or
when settings/data response data is received from the Lower-layer Communications Software block
via the individual lower-layer communications interface, it is notified to the ECHONET
Communications Processing Block in a format specified in the Common Lower-Layer
Communication Interface.

7-9

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
7 Protocol Difference Absorption Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

7.7 Description of Processing Functions

Table 7-1 lists the functions processed in the Protocol Difference Absorption Processing Block and
indicates their implementation status. The function numbers shown in Table 7-1 are used as the
symbols for presenting Protocol Difference Absorption Processing Block processing functions.

Table 7-1 List of Protocol Difference Absorption Processing Block Functions (1/2)
Functions Function

No. (overview)
Implementa-ti

on Status Remarks

Message assembly processing C1 ａ
Message transmission processing indicated in Sections
7.2, 4.2, and 4.2.10

Required

Message splitting processing C2 ａ
Message transmission processing indicated in Sections
7.3, 4.2, and 4.2.10

Required

Address conversion processing for power line
communications protocol
ａ

Processing indicated in Section 7.4.1
Address conversion processing for low-power wireless
protocol

b

Processing indicated in Section 7.4.2
Address conversion processing for extended HBS ｃ

Processing indicated in Section 7.4.3
Address conversion processing for IrDA Control protocol ｄ

Processing indicated in Section 7.4.4
Address conversion processing for LonTalk protocol

C3

ｅ
Processing indicated in Section 7.4.5

Required * *Those relating to
non-implemented
Lower-layer
Communications Software
protocols need not be
implemented.

Communications type conversion processing for power line
communications protocol
ａ

Processing indicated in Section 7.5.1
Communications type conversion processing for low-power
wireless protocol

b

Processing indicated in Section 7.5.2
Communications type conversion processing for extended
HBS
ｃ

Processing indicated in Section 7.5.3
Communications type conversion processing for IrDA
Control protocol
ｄ

Processing indicated in Section 7.5.4

Communications type conversion processing for LonTalk
protocol

C4

ｅ

Processing indicated in Section 7.5.5

Required * *Those relating to
non-implemented
Lower-layer
Communications Software
protocols need not be
incorporated.

7-10

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
7 Protocol Difference Absorption Processing Block Processing Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 7-1 List of Protocol Difference Absorption Processing Block Functions (2/2)

Functions Function
No. (overview)

Implementa-ti
on Status Remarks

Common Lower-Layer Communication Interface processing
(1)
ａ

Processing indicated in Section 7.6; required API
processing indicated in Level 1 of Part V specifications

Required

Common Lower-Layer Communication Interface processing
(2)

b

Processing indicated in Section 7.6; optional API
processing indicated in Level 1 of Part V specifications

Common Lower-Layer Communication Interface processing
(3)
ｃ

Processing indicated in Section 7.6; required API
processing indicated in Level 2 of Part V specifications

Required

Common Lower-Layer Communication Interface processing
(4)

C5

ｄ

Processing indicated in Section 7.6; optional API
processing indicated in Level 2 of Part V specifications

8-1

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
8 ECHONET Communication Middleware State Transitions

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Chapter8 ECHONET Communication Middleware State Transitions

8.1 Basic Concept

This section will specify ECHONET Communication Middleware state transitions. The state
transition specifications stated in this chapter enable the application software to determine the
operating status of communication middleware. The common lower-layer communication interface
divides the ECHONET communication middleware into two layers: the ECHONET
Communications Processing Block and the Protocol Difference Absorption Processing Block. This
chapter presumes that the Protocol Difference Absorption Processing Block operates in synchronism
with lower-layer communication software, and stipulates the state transitions of the ECHONET
Communications Processing Block only.

8-2

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
8 ECHONET Communication Middleware State Transitions

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

8.2 State Transitions in ECHONET Communications Processing Block

Fig. 8.1 summarizes the state transitions of the ECHONET Communications Processing Block.
Shaded events (MidInitAll, MidInit, etc.) in the figure indicate requests from application software. The
term "Error detection" in the figure refers to the detection of an error in the ECHONET
Communications Processing Block. The ECHONET Communications Processing Block remains in
the normal operation state even when an upper-layer error (application software error) or lower-layer
error (Protocol Difference Absorption Processing Block or lower-layer communication software
error) is detected. Table 8.1 outlines various states.

Fig. 8.1 ECHONET Communications Processing Block State Transition Diagram

Cold start (1)

Cold start (2)

Cold start (3)

Halt

Warm start

Net ID write

Start failure

MidInit
MidReset

MidStart

Start process
completed

MidRequestRun

MidStop

Error stop

Error detection
Recovery
detection

MidInitAll MidStart

MidInit MidReset

PowerOn

Communication stop

Normal operation

MidInitAll

Temporary halt

MidSuspend

MidWakeUp

MidHalt

Start failure

Start failure

Start failure

Start process
completed

Start process
completed

Start process
completed

8-3

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
8 ECHONET Communication Middleware State Transitions

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 8.1 ECHONET Communications Processing Block State Overview (1/2)

State name Sequence of execution in ECHONET Communications Processing Block Instructions to lower layer

Stop - State prevailing after power ON.
- Waits for the instruction for initiating a cold start (1), cold start (2), cold

start (3), or warm start process.

Cold start (1) - Initializes various parameters within the middleware.
- State prevailing during a start process performed with the house code data,

MAC address, and Net ID discarded.
- MidInitAll invokes a status change from the stop state.
- Instructs the lower layer to discard and update the house code data and

MAC address.
- Requests that the lower layer furnish a Node ID when the lower-layer

house code data and MAC address are successfully discarded and updated.
- Requests that the lower layer start communication and then searches the

default router within the subnet to acquire a Net ID.
- Set Net ID to 0x00 if the default router is not found.
- Switches to the communication stop state when a series of processes ends

normally.
- Switches to the stop state if the processes are not successfully completed.

- Requests that the lower
layer start by discarding
and updating the house
code data and MAC
address. (ClcInitAll)

- Requests a Node ID.
(ClcGetNodeID)

- Requests the start of
communication.
(ClcRequestRun)

- Searches the default router.
- Issues the instruction for a

Net ID read into the default
router.

Cold start (2) - Initializes various parameters within the middleware.
- State prevailing during a start process performed with the MAC address

and Net ID discarded.
- MidInit invokes a status change from the stop state.
- Instructs the lower layer to discard and update the MAC address.
- Requests that the lower layer furnish a Node ID when the lower-layer

MAC address are successfully discarded and updated.
- Requests that the lower layer start communication and then searches the

default router within the subnet to acquire a Net ID.
- Set Net ID to 0x00 if the default router is not found.
- Switches to the communication stop state when a series of processes ends

normally.
- Switches to the stop state if the processes are not successfully completed.

- Requests that the lower
layer start by discarding
and updating the MAC
address. (ClcInit)

- Requests a Node ID.
(ClcGetNodeID)

- Requests the start of
communication.
(ClcRequestRun)

- Searches the default router.
- Issues the instruction for a

Net ID read into the default
router.

Cold start (3) - Initializes various parameters within the middleware.
- State prevailing during a start process performed with the Node ID and

Net ID discarded.
- MidReset invokes a status change from the stop state.
- Discards the Node ID and Net ID retained by the ECHONET

Communications Processing Block, then requests and acquires a Node ID
based on the MAC address currently retained by the lower layer. Switches
to the stop state if the lower layer does not retain a MAC address.

- Requests that the lower layer start communication and searches the default
router within the subnet to acquire a Net ID when the Node ID is
successfully acquired.

- Set Net ID to 0x00 if the default router is not found.
- Switches to the communication stop state when a series of processes ends

normally.
- Switches to the stop state if the processes are not successfully completed.

- Requests that the lower
layer start while retaining
the MAC address.
(ClcReset)

- Requests a Node ID.
(ClcGetNodeID)

- Requests the start of
communication.
(ClcRequestRun)

- Searches the default router.
- Issues the instruction for a

Net ID read into the default
router.

8-4

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
8 ECHONET Communication Middleware State Transitions

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 8.1 ECHONET Communications Processing Block State Overview (2/2)

State name Sequence of execution in ECHONET Communications Processing Block Instructions to lower layer

Warm start - Initializes various parameters within the middleware.
- State prevailing during a start process performed with the Node ID and

Net ID retained.
- MidStart invokes a status change from the stop state.
- Requests and acquires the Node ID currently possessed by the lower layer.

Switches to the stop state if the lower layer does not retain the Node ID.
- Compares the new Node ID acquired from the lower layer against the

current Node ID. Switches to the stop state if they do not match.
- Requests that the lower layer start communication and searches the default

router within the subnet to acquire a Net ID when the Node IDs match.
- Switches to the stop state if the newly acquired Net ID does not match the

currently possessed Net ID.
- Uses the Net ID possessed by the ECHONET Communications

Processing Block as a new Net ID if the default router is not found.
- Switches to the communication stop state when processing ends normally.

- Requests that the lower
layer start while retaining
the MAC address.
(ClcReset)

- Requests a Node ID.
(ClcGetNodeID)

- Requests the start of
communication.
(ClcRequestRun)

- Searches the default router.
- Issues the instruction for a

Net ID read into the default
router.

Communication
stop

- Standby state ready for communication with the ECHONET address
determined.

- MidRequestRun invokes a status change to the communication operation
state.

- Does not accept an ECHONET communication or object operation
process request from application software.

- Switches to the stop state when the possessed Net ID is rewritten.

Normal
operation

- State in which an ECHONET communication or object operation process
can be performed in compliance with a request from application software.

- Switches to the stop state when the possessed Net ID is rewritten.

- Start of operation
(ClcRun)

Temporary halt - State in which no ECHONET communication or object operation process
is performed and no ECHONET communication process request is issued
to the Protocol Difference Absorption Processing Block.

- Start of operation
(ClcWakeUp)

Error stop - State in which communication is stopped due to an abnormality.

 9-1

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Chapter9 ECHONET Objects: Detailed Specifications

9.1 Basic Concept
This section will specify specific values for the class codes of ECHONET objects processed in the
ECHONET Communication Middleware, whose types and overview were given in Chapter 4, along
with property configurations and detailed specifications for property configurations. In the case of
class codes, as shown in Chapter 2, rather than providing entirely new specifications, standards already
being studied by the industry were applied whenever possible to capitalize on past work. Regarding
object properties, the operands (control content) of JEM-1439 were analyzed and referred to.
ECHONET objects described in this section and in the APPENDIX are, as already noted in Chapter 3,
divided into three main classes: device objects, profile objects, and communications definition objects.
In terms of the code structure, they will be divided into the class groups shown below. After presenting
the shared ECHONET property specifications and object super classes that form ECHONET objects,
this section will provide guidelines for each class group (except for the service group) and details for
each class.

(1) Device objects
・Sensor-related device class group
・Air conditioning-related device class group
・Housing-related device class group
・Cooking/housework-related device class group
・Health-related device class group
・Management and control-related device class group
・AV-related device class group

(2) Profile objects
・Profile class group

(3) Communications definition objects
・Sensor-related device communications definition class group
・Air conditioning-related device communications definition class group
・Housing-related device communications definition class group
・Cooking/housework-related device communications definition class group
・Health-related device communications definition class group
・Management and control-related device communications definition class group
・Profile communications definition class group
・AV-related device communications definition class group

Detailed specifications for each device object class will be provided in the APPENDIX

(ECHONET Device Objects: Detailed Specifications).
Each ECHONET node must implement a device object for at least one representative device.

 9-2

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.2 ECHONET Properties: Basic Specifications

This section will discuss the specifications shared by all ECHONET object classes, of which details
are provided in this section and in the APPENDIX.

9.2.1 ECHONET Property Value Data Types

The ECHONET property value is expressed as an unsigned integer when the value is a

non-negative integer value; it is expressed as a signed integer when the value is an integer value
containing negatives.

When the value is a small value, it is handled as a fixed point type; when it is a non-negative small
value, it is treated as an unsigned integer; and when it is a small value containing negatives, it is treated
as a signed integer. Data types and sizes are specified individually for each property.

Although property data size is specified individually for each property, property value data of 2
bytes or larger comprises ECHONET Communication Middleware dataas ECHONET property
value data (EDT) beginning from the significant byte.

9.2.2 ECHONET Property Value Range

The definition range for the ECHONET properties specified in this section and in Part 2, Paragraph 9.2.2,
and the treatment of property values when the corresponding actual device property value operating range
differs therefrom, are specified below.

 (1) When the actual device property value operating range corresponding to the ECHONET property is
smaller than the ECHONET property definition range and the actual device property value assumes the
upper or lower limit value, the upper or lower limit value of the operating range are considered to be the
property values.
Assuming that the ECHONET property definition range is 0x00-0xFD (0℃–253℃) and the
corresponding actual device operating range is 0x0A–0x32 (10℃-50℃), when the actual device property
value is the upper limit (50℃) of the operating range, the upper limit value 0x32 (50℃) of the actual device
operating range is considered as the ECHONET property value, and when the actual device property value
is the lower limit value (10℃), the lower limit value 0x0A (10℃) is considered to be the ECHONET
property value.

 (2) When the actual device property value operating range corresponding to the ECHONET property is
larger than the ECHONET property definition range and the actual device property value assumes a value
outside the ECHONET property definition range, a code showing an underflow or overflow becomes the
property value.

Assuming that the ECHONET property definition range is 0x00-0xFD (0℃–253℃) and the
corresponding actual device operating range is -10℃ to 300℃, when the actual device property value

 9-3

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

assumes a value below the ECHONET property definition range, the underflow code 0xFE becomes
the property value; when the actual device property value assumes a value above the ECHONET
property definition range, the overflow code 0xFF becomes the property value.

Table 9.1 shows the underflow and overflow codes for each data type.

Table 9.1 Data types, data sizes, and overflow/underflow codes
 DATA type DATA size Underflow Overflow
signed char 1 Byte 0x80 0x7F
signed short 2 Byte 0x8000 0x7FFF
signed long 4 Byte 0x80000000 0x7FFFFFFF

unsigned char 1 Byte 0xFE 0xFF
unsigned short 2 Byte 0xFFFE 0xFFFF
unsigned long 4 Byte 0xFFFFFFFE 0xFFFFFFFF

9.2.3 Required Class Properties

In the class property specifications described in this Chapter, the properties indicated as
“Mandatory” must be implemented when implementing the given class.

In addition, actual devices need not implement functions corresponding to all codes listed in the
property content value range for a required property; they must implement only those codes
corresponding to the functions they possess.

In the "Announcement at status change" column in the property list, the "o" mark denotes
mandatory processing when the property is implemented. When a property marked in this manner is
implemented and its status changes, an announcement (property value notification service data
transmission with an intra-domain general broadcast specified) must be made.

9.2.4 Array

ECHONET properties can be in the form of an array. Array elements are stipulated by an array element
number, which ranges from 0x0000 to 0xFFFF. Array elements may be noncontiguous. The data type of
each array element must be unique within a property.

For the property value element-stipulated write service (ESV = 0x64, 0x65), property value

0x12

0x0000 0x0001 0x0002 0x0004

0x23 0x34 0x41

(Example) Array element 0x0005

0x42

0x0007

0x52

The array element numbers 0x0003 and 0x0006 do

t i t

 9-4

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

element-stipulated read service (ESV = 0x66), property value element-stipulated notification service
(ESV = 0x67), and property value element-stipulated deletion service (ESV = 0x6A, 0x6B), the "
response not possible" is returned if the array element does not exist. In the case of the property value
element-stipulated addition service (ESV=0x68, 0x69), the "process not possible" response is returned if
the array element already exists.

 The property value element-stipulated deletion service deletes a specified array element but does not
shift subsequent elements forward.

The property value element addition service (ESV = 0x6D, 0x6E) does not specify the array element
number to which an element addition is to be applied. Such a target array element number depends on
the implementation.

0x12

0x0000 0x0001 0x0002 0x0004

0x23 0x34 0x41

(Example) Array element 0x0005

0x42

0x0007

0x52

Array element No. 0x0001 is deleted.

0x12

0x0000 0x0002 0x0004

0x34 0x41

0x0005

0x42

0x0007

0x52

0x12

0x0000 0x0001 0x0002 0x0004

0x23 0x34 0x41

(Example) Array element 0x0005

0x42

0x0007

0x52

Array element addition (value = 0xFF)

0x12

0x0000 0x0001 0x0002 0x0004

0x23 0x34 0x41

0x0005

0x42

0x0007

0x52

0x0006

0xFF

The array element number to which the addition
is to be applied depends on the implementation.

 9-5

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.3 Device Object Super Class Specifications

This section will provide detailed specifications for the property configurations shared by all device

object classes in the class groups corresponding to device objects (class group codes 0x00–0x06).
These specifications will be presented as the device object super class.

9.3.1 Overview of Device Object Super Class Specifications

The device object super class property is implemented by each device object class. Specifications for
the device object super class are shown below.

The “Operating status” (EPC=0x80) property implements the “Get” access rule for all device object
classes, that it can be referenced from other nodes. Similarly, the “Status change announcement
property map” (EPC=0x9D), “Fault status” (EPC=0x88), “Set properties map” (EPC=0x9E), and
“Get properties map” (EPC=0x9F) properties also implement the “Get” access rule, that they can be
referenced.

Table 9.2 shows the list of device object super class configuration properties.

Table 9.2 List of Device Object Super Class Configuration Properties (1/2)
 Property Content

 Property Name EPC
 Value range (decimal notation)

Data type
Data
Size

(Byte)

Access
Rule

Mandatory
Announce-m
ent Status

Change

Rem
arks

Indicates ON/OFF status. Set Operating status 0x80
ON=0x30, OFF=0x31

unsigned
char

1
 Get ○

○

Indicates the ECHONET instance
installation location.

Set Installation location 0x81

See Section 9.3.4 Installation Location
Properties

unsigned
char

1

Get ○

○

Indicates applicable specification version. Specification
version
information

0x82
1st byte: Indicates major version number
(digits to the left of the decimal point) in
binary notation.
2nd byte: Indicates minor version number
(digits to the right of the decimal point) in
binary notation.
3rd byte: Indicates the order of release in
ASCII notation.
4th byte: Reserved for future use (fixed at
0x00).

unsigned
char

4

Get ○

Indicates an encountered abnormality
(sensor trouble, etc.).

Fault status 0x88

Fault encountered = 0x41, no fault
encountered = 0x42

unsigned
char

1

Get ○ ○

Fault content Fault content 0x89
0x0000-0x03E8 (0-1000)

unsigned
short

2

Get

Stipulated in 3 bytes Manufacturer code 0x8A
(To be specified by ECHONET
Consortium)

unsigned
char

3

Get ○

Stipulated in 3-byte place-of-business code Place of business code 0x8B
(Specified individually by each
manufacturer)

unsigned
char

3

Get

 9-6

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Table 9.2 List of Device Object Super Class Configuration Properties (2/2)
 Property Content

 Property Name EPC
Value range (decimal notation)

Data type
Data
Size

(Byte)

Access
Rule

Mandatory
Announce

Status
Change

Rem
arks

Stipulated in ASCII code Product code 0x8C
(Specified individually by each
manufacturer)

unsigned
char

12

Get

Stipulated in ASCII code Serial number 0x8D
(Specified individually by each
manufacturer)

unsigned
char

12

Get

Stipulated in 4 bytes Date of manufacture 0x8E
Indicates the date in YYMD format (1 byte
per character).
YY: Year (07CF for 1999)
M: Month (0C for December)
D: Day (14 for 20th)

unsigned
char

4

Get

SetM property map 0x9Ｂ See Supplement 2 unsigned
char

Max.
17

Get ○

GetM property map 0x9C See Supplement 2 unsigned
char

Max.
17

Get ○

Status Change
Announcement property
map

0x9D See Supplement 2 unsigned
char

Max.
17

Get ○

Set property map 0x9E See Supplement 2 unsigned
char

Max.
17

Get ○

Get property map 0x9F See Supplement 2 unsigned
char

Max.
17

Get ○

Note: In Announcement at status change, denotes mandatory processing when the
property is implemented.

 9-7

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.3.2 Operating Status Property

The device object super class “Operating status” property indicates the operating status (ON/OFF)

of the functions unique to each class in the actual device. In nodes implementing each device object
class, when the functions unique to each class begin operation along with the node, this property can
be implemented with a fixed value of 0x30. (However, the operating status of node communication
functions is indicated in the node profile object “Operating status” property.)

9.3.3 Installation Location Property

The installation location property specifies with 1-byte bitmap data the location where the device is
installed. This is a mandatory property that can be rewritten. When there has been a change to the value, the
changed value must be general broadcast within the domain.

The 8 bits of the installation location property are assigned with a freely-defined designation bit, an
installation location code, and a location number. When all bits are zero, it is a special code indicating that
the installation location has not been set, and when all bits are 1, it is a special code indicating that the
installation location is unfixed.

Explanation of each of the bits follows. Table 9.3 shows the relationships between the installation location,
freely-defined designation bit, installation location code, and location number.

Freely-defined designation bit (b7)
 This comprises a single b7 bit. When b7=1, the installation location code and location number can be
freely defined.
 When b7=0, the installation location code and location number indicate the installation location of the
device as specified in Table 9.3.

Installation location code (b3-b6)
 This comprises 4 bits, b3 through b6. When b7=1, it can be freely defined. When b7=0, it indicates the
type of the installation location of the device as specified in Table 9.3.

Location number (b0-b2)
This comprises 3 bits, b0 through b2. When b7=1, it can be freely defined. When b7=0, it is used to
distinguish among 2 or more spaces of the same type when there are 2 or more such spaces. For example,
when there are 2 bathrooms, they can be distinguished from each other by assigning the location number
001b to the first floor bathroom and 010b to the second floor bathroom.
 When b7=0 and the location number field is 000b, it indicates that the installation location property has
been initialized assuming that a device will be installed in the installation location shown by the installation
location code (“location number not set.”)

 9-8

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

When the installation location property has been initialized without assuming a device installation location
type, the value must be the “installation location not set” code (0x00). When it is inappropriate to set a
particular type for the device installation location, the installation location property value must be the
“installation location unfixed” code (0xFF).

0x01 through 0x07 shall be reserved for future use.

Table 9.3 Relationship Between Installation Location Space Name and Bit Assigned

 MSB LSB

Type of installation location Freely
define
d
design
ation
bit

Installation location code Location number

 b7 b6 b5 b4 b3 b2 b1 b0

Living room 0 0 0 0 1

Dining room 0 0 0 1 0

Kitchen 0 0 0 1 1

Bathroom 0 0 1 0 0

Toilet 0 0 1 0 1

Washbowl 0 0 1 1 0

Corridor 0 0 1 1 1

Room 0 1 0 0 0

Stairs 0 1 0 0 1

Hall 0 1 0 1 0

Spare room 0 1 0 1 1

Garden/exterior 0 1 1 0 0

Carport 0 1 1 0 1

Veranda/Balcony 0 1 1 1 0

Others 0 1 1 1 1

“000b”～“111b”

("000b" means that the location
number has not been set.)

Freely defined* 1 “0000000b” through “1111110b”

Installation location not set 1 1 1 1 1 1 1 1

Installation location unfixed 1 1 1 1 1 1 1 1

Reserved for future use 1 “00000001b” through “00000111b”

* "Freely defined" locations are provided mainly for use in stores and small and medium-sized buildings.
They can be freely defined by vendors, or their operation specifications may be established in
accordance with individual application systems.

 9-9

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.3.4 Specification Version Information

Indicates the applicable specification version number with a 2-byte binary value and the order of
APPENDIX release with a 1-byte ASCII code.
The first byte indicates the major version number (digits to the left of the decimal point). The second byte
indicates the minor version number (digits to the right of the decimal point). The third byte indicates the
order of release. To indicate Version 2.10 Release a, for instance, the contents of the first, second, and third
bytes are 0x02 (2), 0x0A (10), and 0x61 (a), respectively.

The fourth byte, which is reserved for future expansion, is fixed at 0x00 in this Version.

9.3.5 Fault Status Property

The "fault status" property of the device object super class indicates the occurrence of an error in an
actual device. The property code used as a property value is 0x41 when an error exists or 0x42 when
no error exists.

9.3.6 Fault Content Property

The value of the fault content property will be assigned using the codes shown in

Table 9.4.

Table 9.4 Fault Content Property Value Assignment
Fault content

 property value
(decimal)

Fault content

0x0000 (0) No error
0x0001 (1) Turn off operating/power switch or unplug device

and restart
0x0002 (2) Press reset button and restart
0x0003 (3) Improper settings
0x0004 (4) Replenish
0x0005 (5) Clean (filter, etc.)
0x0006 (6) Replace battery

0x0007–0x0009
 (7–9)

No error

Reserved for future use

0x000A–0x0013
 (10–19)

Abnormal phenomenon/safety device operation

0x0014–0x001D
 (20–29)

Switch fault

0x001E–0x003B
 (30–59)

Error

Sensor fault

 9-10

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

0x003C–0x0059
 (60–89)

Functional component fault

0x005A–0x006E
 (90–110)

Control board fault

0x006F–0x03E8

Available to user
0x03E9–0xFFFF Reserved for future use

9.3.7 Manufacturer Code Property

The property value of the manufacturer code property uses 3-byte codes to indicate individual
manufacturers. The ECHONET Consortium assigns a manufacturer-specific property value to each
ECHONET Consortium member.

9.3.8 Place-of-Business Code Property

The property value of the place-of-business code property uses 3-byte codes to indicate the place of
business of individual manufacturers. The property value of the place-of-business code property is not
stipulated by the ECHONET Consortium, but instead will be stipulated by individual manufacturers.

9.3.9 Product Code Property

The property value of the product code property uses 12-byte ASCII codes to indicate the products
of various manufacturers. The property value of the product code property is not stipulated by the
ECHONET Consortium, but instead will be stipulated by individual manufacturers.

9.3.10 Serial Number Property

The property value of the serial number property uses 12-byte ASCII codes to indicate the product
serial numbers of various manufacturers. The property value of the serial number property is not
stipulated by the ECHONET Consortium, but instead will be stipulated by individual manufacturers.

9.3.11 Date-of-Manufacture Property

The property value of the date-of-manufacture property uses four bytes to indicate the date of
manufacture of various manufacturer products. Specifically, it uses two bytes to indicate the year and
one byte each to indicate the month and day.

 9-11

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.3.12 Property Map Property

The device object super class provides five property maps, which define the information for
describing the services that can be offered by the properties disclosed by the objects.

Four of the five property maps, namely, the "Set property map", "Get property map", "SetM
property map", and "GetM property map", provide the information that indicates the relationship
between the properties disclosed by the implemented objects and access rules (see Part 2, Section
4.2.8; hereinafter referred to as ARs) stipulated as product specifications.

The "status change announcement property map" indicates that an intra-domain general broadcast
should be performed when the property value changes.

The map description formats are shown in Supplement 2.
The property maps are defined as stated below:

(1) Set property map
This property map indicates the properties relating to the "Set" AR.
(2) Get property map
This property map indicates the properties relating to the "Get" AR.
(3) SetM property map
This property map indicates the properties relating to the "SetM" AR.
(4) GetM property map
This property map indicates the properties relating to the "GetM" AR.
(5) Status Change Announcement property map

This property map lists the properties that are set for a general broadcast of changes in their values.

In addition to the intra-domain general broadcast stipulated in the "Status Change Announce" column
for ECHONET specifications for various object properties supported by product specifications,
properties for making a "status change announcement" uniquely in compliance with product
specifications are included as well. This property map does not include a status notification that is set
by the "communication definition object for specifying the status notification method", which is stated
later.

No associated property maps are stipulated for the "AddM", "DelM", "AddMS", "Anno",

"AnnoM", and "CheckM" ARs.

 9-12

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.4 Sensor-related Device Class Group Objects: Detailed Specifications

Stated in the APPENDIX (Detailed Stipulations for ECHONET Device Objects)

9.5 Air Conditioning-related Device Class Group Objects: Detailed
Specifications

Stated in the APPENDIX (Detailed Stipulations for ECHONET Device Objects)

9.6 Housing/Equipment-related Device Class Group Objects: Detailed
Specifications

Stated in the APPENDIX (Detailed Stipulations for ECHONET Device Objects)

9.7 Cooking/Housework-related Device Class Group Objects: Detailed
Specifications

Stated in the APPENDIX (Detailed Stipulations for ECHONET Device Objects)

9.8 Health-related Device Class Group Objects: Detailed Specifications

Stated in the APPENDIX (Detailed Stipulations for ECHONET Device Objects)

 9-13

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.9 Management/Control-related Device Class Group Objects: Detailed
Specifications

Detailed class specifications other than those in Section 9.9.1, "Detailed Specifications for Secure
Communication Common Key Setup Node Class", are stated in the APPENDIX "Detailed
Stipulations for ECHONET Device Objects".

9.9.1 Detailed Specifications for Secure Communication Common Key
Setup Node Class

This class is to be implemented by nodes having the key setup function. It is used to request
ECHONET secure communication common key redistribution by writing to the common key
distribution request property of this class in a shared-key-based authentication/enciphered message
format.

Class group code: 0x05
Class code: 0xFC
Instance code: 0x01

Table 9.4 Secure Communication Common Key Setup Node Class

 Property Content
 Property Name EPC

 Value range (decimal)
 Data Type Size

(Byte)
Access
Rule

Required
Status

Change
Announce

Remarks

Receives a request for ECHONET secure
communication common key (User
Key/Service Provider Key) setup. Common key distribution

request 0xC0
Request trigger for ECHONET secure
communication common key (User
Key/Service Provider Key) setup = 0x00.

Unsigned
char 1 Set ○ (2)

(1) Operating status (inherited from the property of device object super class)
 Indicates whether the function native to this class is operating or not (ON/OFF). In the node

mounting this class, if the function of this class is started concurrently with the start of node
operation, this property may be implemented at a fixed value of 0x30 (operating status ON).

(2) Common key distribution request
 Requests the redistribution of an ECHONET secure communication common key when a

property value (ESV = 0x60, 0x61) is written to this property (0x00).

 9-14

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.10 Profile Object Class Group Specifications

This section will provide detailed specifications for the property configurations shared by all profile
object classes in the profile object class group (class group code 0x0E). These specifications will be
presented as the profile object super class.

9.10.1 Overview of Profile Object Super Class Specifications

Profile object super class properties are implemented by each profile object class. Specifications for
the profile object super class are shown in Table 9.4 below.

Table 9.4 List of Profile Object Super Class Configuration Properties
 Contents of Property

 Property Name EPC
 Value range (decimal notation)

 Data Type
Data
Size

(Byte)

Access
Rule

Mandatory
Announce-
ment status

change

Remark
s

Indicates an encountered abnormality
(sensor trouble, etc.). Fault status 0x88
Fault encountered = 0x41, no fault
encountered = 0x42

unsigned
char 1 Get (1)

Stipulated in 3 bytes
Manufacturer code 0x8A (To be specified by ECHONET

Consortium)

unsigned
char ３ Get ○

Stipulated in 3-byte place of business code
Place of business code 0x8B (Specified individually by each

manufacturer)

unsigned
char ３ Get

Stipulated in ASCII code
Product code 0x8C (Specified individually by each

manufacturer)

unsigned
char 12 Get

Stipulated in ASCII code
Serial number 0x8D (Specified individually by each

manufacturer)

unsigned
char 12 Get

Stipulated in 4 bytes

Date of manufacture 0x8E
YYMD (1 byte each)
YY: Western calendar (1999:07CF)
M: Month (Dec=0C)
D: Day (20th=14)

unsigned
char ４ Get

SetM property map 0x9B See Supplement 2 unsigned
char

Max.
17 Get ○

GetM property map 0x9C See Supplement 2 unsigned
char

Max.
17 Get ○

Status Change
Announcement property
map

0x9D See Supplement 2 unsigned
char

Max.
17 Get ○

Set property map 0x9E See Supplement 2 unsigned
char

Max.
17 Get ○

Get property map 0x9F See Supplement 2 unsigned
char

Max.
17 Get ○

Note: In Announcement at status change, denotes mandatory processing when the
property is implemented.

(1) Fault status

 9-15

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Indicates a fault in the given profile object. For example, the fault state property for the ECHONET
Communications Processing Block profile object indicates whether there is a fault in the ECHONET
Communications Processing Block software. Since specific fault content differs for each object class,
detailed specifications are provided separately.

9.10.2 Property Map

For the five property maps stipulated for the profile object super class, the properties stipulated for the
profile object are the same as provided in Section 9.3.5.

 9-16

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.11 Profile Class Group Detailed Specifications

This section will provide detailed code and property specifications for each ECHONET object
belonging to the profile class group (class group stipulation code X1=0x0E). Table 9.4 provides a list
of the objects for which detailed specifications are provided in this section. Properties shared (for
which a succession relationship is established) by all profile object classes in this object class group are
indicated as super classes in Section 9.5 Profile Object Class Group Specifications. Regarding detailed
items for each object class, the properties described in these super classes will not be listed unless there
are special additional specifications. In the detailed specifications, the indication of an object as being
“required” signifies that, when the given object is present, the combined property and service of that
object must be implemented. One profile object class exists at each node (this may not be the case
when the profile object classes are not mondatory). When, for instance, an ECHONET router or other
communication device consisting of two or more nodes is used, each node has a node profile and
router profile. Therefore, the device consisting of such nodes has two or more node profiles and router
profiles.

Table 9.5 List of Profile Class Group Objects
Group Code Class Code Object Class Name Mandatory

0xF0 Node profile ○
0xF1 Router profile ○ (when the Net

ID server or
router functions
are provided)

0xF2 ECHONET Communications Processing Block
profile

0xF3 Protocol Difference Absorption Processing Block
profile

0x0E

0xF4 Lower-layer Communications Software profile

 9-17

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.11.1 Node Profile Class Detailed Specifications

Class group code : 0x0E
Class code : 0xF0
Instance code : 0x01

 Contents of Property

 Property Name EPC
 Value range (decimal notation)

 Data Type
Data
Size

(Byte)

Access
Rule

Mandatory

Announ-
cement
status

change
Remarks

Indicates node operating status. Set Operating status 0x80
Booting=0x30, not booting=0x31

unsigned
char 1

Get ○
○ (1)

Indicates ECHONET version used by
communication middleware and message
types supported by communication
middleware.

Version information 0x82

1st byte: Indicates major version number
(digits to left of decimal point) in binary
notation.
2nd byte: Indicates minor version number
(digits to right of decimal point) in binary
notation.
3rd and 4th bytes: Indicate message types
with a bitmap.

unsigned
char 4 Get ○ (20)

Fault content Fault content 0x89
0x0000–0x03E8 (0–1000)

unsigned
short 2 Get (2)

Stipulated in 2 bytes
Unique identifier data 0xBF

See (3) below.
unsigned

short 2 Set/Get ○ (3)

Held value of all EAs Set
EA 0xE0 Byte 1: Number of held EAs

Byte 2 and higher: List EAs (2 bytes each)

unsigned
char

Max
247 Get ○ (4)

1-byte Net ID value
Net ID 0x E1

Initial value =0x00
unsigned

char 1 Set/Get ○ (5)

1-byte Node ID value Set
Node ID 0x E2

Initial value =0x00
unsigned

char 1
Get ○

 (6)

EA value for default router Set
Default router data 0x E3 Initial value =0x0000 (no default router

data)

unsigned
short 2 Get ○ (7)

All router data within the domain
All router data 0x E4

See Supplement 3
unsigned

char
Max
246 Set/Get (8)

Shows status lock control action status
Lock control status 0x EE

Control=0x30, no control=0x31
unsigned

char 1 Get ○ (9)

Lock control data
Lock control data 0x EF Bytes 1–2: EA of lock source

Byte 3: Lock time

unsigned
char 3 Set/Get (10)

Note: In Announcement at status change, denotes mandatory processing when the
property is implemented. Current device: self-node class; other device: other node class (see
Part 2, Chapter 3).

Note: When there are two or more nodes within a device, each node has this profile class. However,
these nodes must have common values for the EA (0xE0) and all router data (0xE4) properties
because they constitute a single device. (to be continued)

 9-18

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

 (continued)

 Contents of Property
 Property Name EPC

 Value range (decimal notation)
 Data Type

Data
Size

(Byte)

Access
Rule

Mandatory

Announ-
cement
status

change
Remarks

List of instance numbers in the
element-stipulated classes between 0x00
and 0x7F Self-node instance list

page 0x D0 Byte 1: Number of instances in class
stipulated by element
Bytes 2–17: See Supplement 4

unsigned
char 17 GetM ○ (11)

Element-stipulated class groups and code
range class list

Self-node class list 0x D2 Byte 1: Number of classes in class group
stipulated by element
Bytes 2–17: See Supplement 5

unsigned
char 17 GetM ○ (12)

Number of instances held in self-node
Self-node instance count 0x D3

Bytes 1–3: Number of instances
unsigned

char 3 Get ○ (13)

Number of classes held in self-node Self-node class count 0x D4
Bytes 1–2: Number of classes

unsigned
char 2 Get ○ (14)

Classes with a change in instance
configuration

Instance change class 0x D5 Byte 1: Number of classes reported on
Byte s 2–17: List of class codes (most
significant 2 bytes of EOJ)

unsigned
char

Max.
17 Anno ○ (15)

List of instances within self-node

Self-node instance list S 0x D6 Byte 1: Number of instances
Bytes 2–16: List of class instance codes
(EOJ)

unsigned
char

Max.
16 Get ○ (16)

List of classes within self-node

Self-node class list S 0x D7 Byte 1: Number of classes
Bytes 2–17: List of class codes (most
significant 2 bytes of EOJ)

unsigned
char

Max.
17 Get ○ (17)

List of EAs of other nodes related by
communications Related other node EA list 0x D8
Byte 1: Number of EAs in list
Bytes 2–245: Lists EA2 byte codes

unsigned
char

Max.
247

Set/
Get (18)

Number of other nodes related in terms of
communications Related other node EA

count 0x D9
Bytes 1–2: Number of EAs

unsigned
char 2 Get (19)

Note: In Announcement at status change, denotes mandatory processing when the
property is implemented. Current device: self-node class; other device: other node class (see
Part II, Chapter3).

Note: When there are two or more nodes within a device, each node has this profile class. However,
these nodes must have common values for the EA (0xE0) and all router data (0xE4) properties
because they constitute a single device.

(to be continued)

 9-19

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(continued)

 Contents of Property
 Property Name EPC

 Value range (decimal notation)
 Data Type

Data
Size

(Byte)

Access
Rule

Mandatory

Announ-
cement
status

change
Remarks

ECHONET secure communication
common key (User Key)

Secure communication
common key setup (User
Key)

0xC0
0x000000000000–
0xFFFFFFFFFFFFFFFF

unsigned
char x 8 8 Set ○*1 (21)

ECHONET secure communication
common key (Service Provider key) Secure communication

common key setup
(Service Provider Key)

0xC1
0x000000000000–
0xFFFFFFFFFFFFFFFF

unsigned
char x 8 8 SetM ○*1 (22)

Sets the ECHONET common key (User
Key) switchover state that is updated by the
User Key setup property. Secure communication

common key switchover
setup (User Key)

0xC2 Common key setup incomplete = 0x40
Common key distribution complete = 0x41
Common key switchover in progress =
0x42
Common key update complete = 0x43

unsigned
char 1 Set/Get ○*1 (23)

Sets the ECHONET common key (User
Key) switchover state that reflects the
ECHONET common key (Service
Provider Key) update by the Service
Provider Key setup property.

Secure communication
common key switchover
setup (Service Provider
Key)

0xC3
Common key setup incomplete = 0x40
Common key distribution complete = 0x41
Common key switchover in progress =
0x42
Common key update complete = 0x43

unsigned
char 1 SetM/

GetM ○
*1 (24)

Note: In Announcement at status change, denotes mandatory processing when the
property is implemented. Current device: self-node class; other device: other node class (see
Part II, Chapter3).

Note: When there are two or more nodes within a device, each node has this profile class. However,
these nodes must have common values for the EA (0xE0) and all router data (0xE4) properties
because they constitute a single device. (to be continued)

*1 Must be mounted when the secure communication function is implemented.

 9-20

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(1) Operating status

Indicates whether the current operating status permits ECHONET node communications.

(2) Fault content
In Version 1.0β, this will be the same as the code assignment for fault content properties for device
objects.

(3) Unique identifier data
Data that guarantees that each node can be uniquely identified within a domain and that the each node
can be treated as an unchanging entity even after devices are moved (e.g., a change in subnet).
Decided using a default value or an assigned value.
As a rule, unique identifier data must be held in non-volatile memory. The only exception to this rule
(i.e., when unique identifier data need not be held in non-volatile memory) is when the combination of
the manufacturer code property value and the serial number property value guarantee unique
identification. If non-volatile storage is not provided, the second most significant bit (b6) is set to 0 as
an exceptional default value so that setup can be performed by an ECHONET node responsible for
numbering (erasure upon power off is permissible).
Code description specifications are shown below.

 Byte 1 (high) Byte 2 (low)

b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0
* ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

Each node sets the default value using the following method:
・ Values for the 14 bits 0x0001–0x3FFF are created randomly. Any method of random number

creation is acceptable.
・ The most significant bit (b7) must be either 0 or 1 in accordance with node specifications.
・ The second-most significant bit (b6) is set to 0.

Even if initial values are duplicated, the duplication can be resolved by newly assigning an appropriate
non-duplicate value from one of the nodes in the system. When newly assigning a value, the value of
the second-most significant bit must be set to 1. Note that the value of the most significant bit is
decided by the node in accordance with the above Fig. and cannot be changed. In response to a request
to write this property, the receiving side masks the most significant bit.

Randomly assigned codes

0: Non-volatile storage possible
 (node can hold unique identifier data in non-volatile
memory)
1: Non-volatile storage not possible

0: Default value
1: Number value assignment by system

 9-21

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(4) EA
All EAs within a device are retained. One EA exists in a node. Therefore, if a device consists of one
node, there is only one EA. For a router or other device consisting of two or more nodes, however, all
associated EAs are retained by this property.

(5) Net ID
Indicates the Net ID of the local subnet. It is mainly used for Net ID distribution from a router to nodes
in the local subnet router startup sequence. Since this is a code in the first byte position of EA, it is
explicitly indicated in an transmitted/received ECHONET message under normal conditions. If the
received request attempts to write a Net ID value different from the currently owned Net ID value into
this property, the status changes to the stop state and then the execution of a warm start starts.

(6) Node ID

Indicates the Node ID of the local node.

(7) Default router data
ECHONET nodes other than a router internally retain the ECHONET address of one of the routers
connected to the same subnet as the "default router" data at the time of Net ID setup. There is no
stipulation for determining which router becomes the "default router".

(8) All router data

This data exists in nodes that perform advanced routing processing (see Section 6.3.2). It holds all
router data for the domain.
Section

(9) Lock control status
Indicates whether or not the entire node is receiving lock control from another node. When being
controlled, it will not accept control from a node other than the one shown in the “lock control data”
property. Note, however, that the read service can be received without specifying the other party even
during lock control.

(10) Lock control data
Shows data for the lock communications partner (i.e., the lock control source) and the time for which
lock control is active. Lock control time is counted down after being set by the source of lock control;
it lets nodes other than the lock control source know how long they must wait for the lock to be
removed when they receive a control request. When the lock is removed, lock control time is cleared.
When the lock control status property indicates lock control is in effect, the lock control data property,
as a rule, will not accept lock control data setting requests from any node. The only exception to this
rule is when it is set to a value that indicates a shortening of the lock time set from the lock control
source in the lock control data. When lock time is set to 0x00, this signifies a removal of the lock.
Byte 1 of lock time is configured as shown below:

 9-22

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

b7 b6 b5 b4 b3 b2 b1 b0
※ ※ ☆ ☆ ☆ ☆ ☆ ☆

Time count in unit stipulated in b7, b6
Stipulates time unit
 b7:b6=0:0 Reserved for future use
 =0:1 1 sec
 =1:0 1 min
 =1:1 Reserved for future use

(11) Self-node instance list

List for each class stipulated for the instances disclosed by self-node. Classes to be included are the
device object and service object classes specified by ECHONET and corresponding to class group
codes 0x00–0x06, 0x0D. Classes are stipulated using elements, and the instance count and list of
instance numbers to be held are indicated with bitmaps. Byte 1 shows the total number of instances in
the class stipulated by the element. Bytes 2–17 are bitmaps for existing instances. Instances to be
included in the list are limited to those disclosing to other nodes services provided by the given
instance.
This property need not be implemented when the number of instances for the device object and
service object classes disclosed by the self-node is less than 5.

(12) Self-node class list
List of classes for each stipulated class group disclosed by the self-node. Class group and range are
stipulated by the element. Class codes disclosed in the stipulated class group range are indicated with
bitmaps. There are two ranges. In Range 1, the least significant byte of the class code is in the range
0x00–0x7F; in Range 2, the least significant byte is in the range 0x80–0xFF.
This property need not be implemented when the number of classes for the self-node is 8 or less.

(13) Self-node instance count
Indicates the total number of instances in all device object and service object classes disclosed by the
self-node.

(14) Self-node class count
Indicates the total number of classes disclosed by the self-node.

(15) Instance change class
Whenever a new instance is added or deleted during startup or system operation, or whenever there is
some other change in the instance configuration disclosed to the network, this property announces to
the network a class code corresponding to the change. This property was designed exclusively as an
announcing property, with the expectation that it would trigger recognition by other nodes of the
details of instance changes. The number of classes to be reported in the given message is inserted in
Byte 1, while the classes experiencing changes in instance configurations are listed in Bytes 2–17
(most significant 2 bytes of EOJ). As many as 8 classes can be announced at one time. When there are
changes in more than 8 classes, the announcement is split into two or more component parts,
assuming that after changes in these 8 classes, the remaining classes also changed. Configuration
changes are to be announced for self-node device object and service object class instances.

 9-23

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(16) Self-node instance list S
List of device object and service object instances disclosed by the self-node. When the total number of
instance lists is 6 or more, this number is inserted in the instance count in Byte 1, and Bytes 2 and after
are left blank for transmission. The value of Byte 1 is specified as follows:
 0x00–0xFE Total number of instances (when 254 or less) instruction
 0xFF Overflow (when 255 or more) instruction

(17) Self-node class list S
List of classes disclosed by the self-node except for node profiles. When the total number of class lists
is 6 or more, the total number is placed in the first byte position as the class count, with the second and
subsequent byte positions left blank for transmission. The value of Byte 1 is specified as follows:
 0x00–0xFE Total number of classes (when 254 or less) instruction
 0xFF Overflow (when 255 or more) instruction

(18) Related other node EA list
List of EAs for partner nodes with instances performing status management or data exchanges, such
as linked relationships. EAs are listed in Byte 2. Up to 122 nodes may be listed. Specifications will be
provided at a future date (in V1.0 or after) for cases in which there are relations with more than 122
nodes.
Note: The EAs included in this list, by disclosing the fact that data is being exchanged with some

instance present in the node indicated by the EA, is an attempt to comply with the plug-and-play
functionality which automatically forms relationships via the network by manipulating linked
relationships between instances as well as maintenance and other relationships. Therefore, when
the partner instance is to be stipulated explicitly and communications performed, it is useful to
include the EA of the partner.

(19) Related other node EA count

Number of EAs of partner nodes with instances performing status management or data exchanges,
such as linked relationships.

(20) Version data

A 2-byte binary value shows the communication middleware version number, and a 2-byte bitmap
indicates the message types supported by the communication middleware.
The first byte indicates the major version number (digits to the left of the decimal point). The second
byte indicates the minor version number (digits to the right of the decimal point). To indicate Version
2.10, for instance, the contents of the first and second bytes are 0x02 (2) and 0x0A (10), respectively.
The third and fourth bytes indicate the supported message types. When the bit value is 1, it means that
the associated message type is supported. The figure below shows the relationship between the bits
and supported message types.

 9-24

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

0 0 0 0 ☆ ☆ ☆

b7 b6 b5 b4 b3 b2 b1 b0

0

Fourth byte
b0～b7: Reserved for future use

０ 0 0 0 ０ 0 0

b7 b6 b5 b4 b3 b2 b1 b0

0

Third byte Fourth byte

Third byte
b0: Basic message format

Third byte
b1: Compound message format

Third byte
b2: Secure message format

Third byte
b3～b7: Reserved for future use

(21) Secure communication common key setup (User Key)
Common key distribution takes place when the property value (ESV = 0x62) is written into this
property in an authentication/enciphered message format based on the node Serial Key or User Key of
a common key (User Key) for User Level authentication/enciphered communication in an
ECHONET secure communication process. The property value indicates a common key (New
Master Key).
When the property value is written in an authentication/enciphered message format based on the Serial
Key, the User Key switchover setup property changes to the common key update completion state
(0x43). When the property value is written in an authentication/enciphered message format based on
the User Key (Pre-Master Key), the User Key switchover setup property changes to the common key
distribution completion state (0x41).

 9-25

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(22) Secure communication common key setup (Service Provider Key)
Common key distribution takes place when a property value element-stipulated write (ESV = 0x65) is
performed in an authentication/enciphered message format based on the node Serial Key or Service
Provider Key of a common key (Service Provider Key) for Service Provider Level
authentication/enciphered communication in an ECHONET secure communication process. Element
numbers indicate a Service Provider Key Index and correspond to the b3 to b0 values of the secure
key header (SKH). The property value indicates a common key (New Master Key).
When a property value element-stipulated write is performed in an authentication/enciphered message
format based on the Serial Key, the Service Provider Key switchover setup property changes to the
common key update completion state (0x43).
When a property value write is performed in an authentication/enciphered message format based on
the User Key (Pre-Master Key), the User Key switchover setup property changes to the common key
distribution completion state (0x41).

(23) Secure communication common key switchover setup (User Key)

This property indicates the switchover status of the common key (User Key) for User Level
authentication/enciphered communication in an ECHONET secure communication process. The
switchover from Pre-Master Key to New Master Key occurs when a property value (switchover in
progress (0x42) or update completion (0x43)) is written into this property in an
authentication/enciphered message format based on the User Key.
When a property value write (ESV = 0x62) is performed in an authentication/enciphered message
format based on the User Key to write "Common key not set" (0x40) is into this property, the node
status changes to the insecure communication state. "Common key distribution completion" (0x41)
indicates a state, and its value cannot be written.
To warm-start a node in the secure communication state, this property must be announced (ESV =
0x73) in an enciphered message format.

(24) Secure communication common key switchover setup (Service Provider)

This property indicates the switchover status of the common key (Service Provider Key) for Service
Provider Level authentication/enciphered communication in an ECHONET secure communication
process. The switchover from Pre-Master Key to New Master Key occurs when a property value
element-stipulated write (ESV = 0x65) is performed to write "switchover in progress (0x42)" or
"update completion" (0x43) into this property in an authentication/enciphered message format based
on the User Key. Element numbers indicate a Service Provider Key Index and correspond to the b3 to
b0 values of the secure key header (SKH). "Common key distribution completion" (0x41) indicates a
state, and its value cannot be written.

 9-26

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.11.2 Router Profile Class: Detailed Specifications

Class group code : 0x0E
Class code : 0xF1
Instance code : 0x01

 Contents of Property

 Property Name EPC
 Value range (decimal notation)

 Data Type
Data
Size

(Byte)

Access
Rule

Mandatory

Announ-
cement
status

change

Remarks

Shows operating status of Net ID server or
router functions. Set Operating status 0x80
Booting=0x31, not booting=0x31

unsigned
char 1

Get ○
○ (1)

Fault content Fault content 0x89
0x0000–0x000F (0–15)

unsigned
short 2 Get (2)

Current router data

Current router data 0xE0
1st byte: Router attribute
2nd byte: Current router ID (default 0x00)
3rd byte: Number of connected networks
4th and subsequent bytes: EA data (2 bytes
each; for all connected nets)

unsigned
char

Max
17 Set/Get ○ (3)

1-byte Net ID value
Net ID 0x E1

Initial value =0x00
unsigned

char 1 Set/Get ○ (4)

1-byte router ID value
Router ID 0x E2

Initial value =0x00
unsigned

char 1 Set/Get ○ (5)

Parent router EA value
Parent router data 0x E3 Initial value =0x0000

 (no parent router data)

unsigned
char 2 Set/Get ○

All router data for domain
All router data 0x E4

See Supplement 3
unsigned

char
Max
246 Set/Get ○

Registration router data

Registration request
router data 0x E5

Byte 1: Router Attribute
Byte 2: Current router ID (default 0x00)
Byte 3: No. of connected networks
Byte 4 and higher: EA data (2 bytes each;
one for each connected network)

unsigned
char

Max
17 Set ○ (6)

Master router data value

Master router data 0xE6 1st byte: Master router identifier (master
router = 0x41, slave router = 0x42)
2nd byte: Net ID information

unsigned
char 2 Get ○ (7)

Note: In Announcement at status change, denotes mandatory processing when the
property is implemented.

Note: When there are two or more nodes within a device, each node has this profile class. However, these
nodes must have common values for all properties other than the Net ID (0xE1) because they
constitute a single device.

(1) Operating status

This profile class exists when a node has the Net ID server or router functions. However, this property
indicates whether the Net ID server functions or router functions are activated (whether a node is
functioning as a router).

 9-27

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(2) Fault content
0x0000 : No fault
0x0001 : No parent router

(None of the connected subnets have been assigned a Net ID, and no parent router exists.)
0x0002 : Failure to obtain data from parent router

(Indicates that router data and all router data cannot be acquired from the Net ID server
functions although these functions are detected within the domain.)

0x0003 : Subnet communications error
(Two or more locally connected subnets are unable to communicate.)

0x0004–0x000F : Open to users
0x0010–0xFFFF: Reserved for future use

(3) Current router data

Byte 1 indicates router attributes. The attributes indicated by this code are specified by the presence or
absence of Net ID server functions, router functions, and router data automatic setting functions. The
“parent router” means the router with the NetID server function. ECHONET routers obtain
automatically the data they require as routers using the startup sequence shown in Chapter 5, but in
structures other than ordinary homes, such as buildings, ECHONET permits cases in which the startup
sequence in Chapter 5 is not followed, as long as the uniqueness of each subnet within the domain is
guaranteed. The presence or absence of router data automatic setting functions indicates whether the
functions of the startup sequence indicated in Chapter 5 are provided. If the functions are not provided,
it means that the router does not conform to the startup sequence in Chapter 5. The figure below shows
the bit specifications for the first byte.

b7 b6 b5 b4 b3 b2 b1 b0
0 1 0 0 0

Net ID server function
 1: YES, 0: NO
Router functions
 1: YES, 0: NO
Automatic setting functions
 1: YES, 0: NO
Fixed (reserved for future use)

There are no cases in which b0 = b1 = 0. (Routers with the stipulation b0 = 0 and b1 = 1 are referred to
as normal routers, while those with the stipulation b0 = 1 are called parent routers.)
The current router ID in Byte 2 is a unique value among the routers within the domain, and in the case
of automatic setting, it is determined uniquely by the parent router.
The number of connected networks, which is indicated by the third byte, is limited to 7. Routers
connecting to 8 or more networks will be covered by future specifications, as a change in the router
attribute is expected.
The fourth and subsequent bytes store the EA data for all connected networks.

 9-28

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(4) Net ID
In the router startup sequence, the Net ID acquired from the master router or parent router is stored.
Since a router relates to two or more subnets, it has a router profile object for each associated subnet.
When viewed from various subnets, the value of this property varies from one subnet to another.

(5) Router ID

This is an identifier given by the parent router. It is used for router identification and managed by the
parent router.

(6) Registration request router data

This property is mandatory for an ECHONET node having Net ID server functions.
A normal router writes all node EAs constituting a normal router (overall EA data) into this property in
the router startup sequence to notify the Net ID server functionality of its EA data.
In accordance with the setup request issued by a normal router to this property, the Net ID server
functionality makes a request for a write into the "current router data" property and "all router data"
property of the associated normal router profile in the router startup sequence.

(7) Master router data

This data is used in the normal router startup sequence. Since a router relates to two or more subnets, it
has a router profile object for each associated subnet. When viewed from various subnets, the value of
this property varies from one subnet to another.

 9-29

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.11.3 ECHONET Communications Processing Block Profile Class: Detailed
Specifications

Class group code : 0x0E
Class code : 0xF2
Instance code : 0x01

 Contents of Property

 Property Name EPC
 Value range (decimal notation)

 Data Type
Data
Size

(Byte)

Access
Rule

Mandatory

Announ-
cement
status

change

Rem
arks

Shows operating status of ECHONET
Communications Processing Block
functions Operating status 0x80

Booting=0x31, not booting=0x31

unsigned
char 1 Set/Get (1)

Fault content Fault content 0x89
0x0000–0x000F (0–15)

unsigned
short 2 Get (2)

Shows software operation transition state
Transition state 0x 8E

0x0000–0x000F(0–15)
unsigned

short 2 Get (3)

Version number of ECHONET
Communications Processing Block Version data 0xB8
 (3 bytes binary)

unsigned
char 3 Get (4)

Buffer size data (max bytes)
Buffer size data 0xB9 (1 byte binary) 6–256

Note: The value 256 is indicated by 0x00.

unsigned
char 1 Get (5)

(1) Operating status
Indicates operating status of Communications Middleware. Used primarily to confirm operating status
of Communications Middleware and switch ON/OFF from application software.

(2) Fault content

0x0000: No fault
0x0001: Exchange with application software inactive

(Indicates state in which messages cannot be passed to the application software via basic
API. Determined by timeout, etc. In this case, only reading from other nodes, including
this property, is possible. Settings for this fault code will not be specified.)

0x0002: Exchange with Protocol Difference Absorption Processing Block and below
inactive.

(Indicates state in which messages cannot be passed to Protocol Difference Absorption
Processing Block via the Common Lower-Layer Communication Interface. Determined
by timeout, etc. In this case, only reading from application software, including this
property, is possible. Settings for this fault code will not be specified.)

0x0003–0x0004: (unused)
0x0005–0x000F: Open to users
0x0010–0xFFFF: Reserved for future use

 9-30

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(3) Transition states

Transition states for ECHONET Communications Processing Block software are shown below.
Specific code assignments are as follows:

0x0000 : Currently halted
0x0001 : Initializing
0x0002 : Normal operation
0x0003 : Normal operation by application error hold
0x0004 : Normal operation by Protocol Difference Absorption Processing Block error
hold
0x0005 : Normal operation by Lower-layer Communications Software error hold
0x0006 : Normal operation by lower-layer communications driver (hardware) error hold
0x0007 : Application error hold halt
0x0008 : Protocol Difference Absorption Processing Block error hold halt
0x0009 : Lower-layer Communications Software error hold halt
0x000A : Lower-Layer communications driver (hardware) error hold halt
0x000B : ECHONET Communications Processing Block error hold halt
0x000C–0x000F : Open to users
0x0010–0xFFFF : Reserved for future use

State priorities for 0x0003–0x0006 and 0x0007–0x000B are as follows:
0x0006>0x0005>0x0004>0x0003
(For example, when the system is operating with both an application error and a Lower-layer

Communications Software error held, it is in normal operation by Lower-layer
Communications Software error hold state.)

0x000B>0x000A>0x0009>0x0008>0x0007
(For example, when the system is halted with both an application error and a Lower-layer

Communications Software error held, it is in a Lower-layer Communications Software error
hold halt state.)

(4) Version data

Uses a 3-byte binary value to present version information for the ECHONET Communications
Processing Block software. No specific value is stipulated.

(5) Buffer size data

Maximum EDATA size that can be processed by the ECHONET Communications Processing Block.

 9-31

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.11.4 Protocol Difference Absorption Processing Block Profile Class:

Detailed Specifications

Class group code : 0x0E
Class code : 0xF3
Instance code : 0x01

 Contents of Property

 Property Name EPC
 Value range (decimal notation)

 Data Type
Data
Size

(Byte)

Access
Rule

Mandatory

Announ-
cement
status

change

Remarks

Shows operating status of Protocol
Difference Absorption Processing Block
functions Operating status 0x80

Booting=0x31, not booting=0x31

unsigned
char 1 Set/Get (1)

Fault content Fault content 0x89
0x0000–0x03E8 (0–1000)

unsigned
short 2 Get (2)

Shows software operation transition state
Transition state 0x 8E

0x0000–0x03E8 (0–1000)
unsigned

short 2 Get (3)

Version number of Protocol Difference
Absorption Processing Block Version data 0xB8
 (3 bytes binary)

unsigned
char 3 Get (4)

Buffer size data (max bytes)
Buffer size data 0xB9 (1 byte binary) 6–256

Note: The value 256 is indicated by 0x00.

unsigned
char 1 Get (5)

(1) Operating status
Shows operating status of Protocol Difference Absorption Processing Block.

(2) Fault content
0x0000 : No fault.
0x0001–0x0002 : (Unused)
0x0003 : Exchange with Lower-layer Communications Software inactive

(Indicates state in which messages cannot be passed to the Protocol Difference
Absorption Processing Block via the individual lower-layer communications interface.
Determined by timeout, etc. In this case, only reading from application software,
including this property, is possible. Settings for this fault code will not be specified.)

0x0004 : (Unused)
0x0005–0x000F : Open to users
0x0010–0xFFFF : Reserved for future use

(3) Transition states

Indicates the state in which the Protocol Difference Absorption Processing Block is placed. The
following codes are assigned:

0x0000 : Currently halted

 9-32

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

0x0001 : Initializing
0x0002 : Normal operation
0x0003–0x0004 : (Unused)
0x0005 : Normal operation by Lower-layer Communications Software error hold
0x0006 : Normal operation by lower-layer communications driver (hardware) error hold
0x0007 : (Unused)
0x0008 : Protocol Difference Absorption Processing Block error hold halt
0x0009 : Lower-layer Communications Software error hold halt
0x000A : Lower-Layer communications driver (hardware) error hold halt
0x000B : (Unused)
0x000C–0x000F : Open to users
0x0010–0xFFFF : Reserved for future use

State priority for 0x0008–0x000A is 0x000A>0x0009>0x0008.

(4) Version data
Uses a 3-byte binary value to present version information for the ECHONET Communications
Processing Block software. No specific value is stipulated.

(5) Buffer size data

Maximum EDATA size that the Protocol Difference Absorption Processing Block can process with
the Communications Processing Block.

 9-33

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.11.5 Lower-layer Communications Software Profile Class: Detailed
Specifications

Class group code : 0x0E
Class code : 0xF4
Instance code : 0x01

 Contents of Property

 Property Name EPC
 Value range (decimal notation)

 Data Type
Data
Size

(Byte)

Access
Rule

Mandatory

Announ-
cement
status

change

Remarks

Shows operating status of Lower-layer
Communications Software functions Operating status 0x80
Booting=0x31, not booting=0x31

unsigned
char 1 Set/Get (1)

Fault content Fault content 0x89 0x0000–0x000F (0–15)
unsigned

short 2 Get (2)

Shows software operation transition state
Transition state 0x 8E

0x0000–0x000F (0–15)
unsigned

short 2 Get (3)

Version number of ECHONET
Communications Processing Block Version data 0xB8
(3 bytes binary)

unsigned
char 3 Get

Stipulates Lower-layer Communications
Software type

Lower-layer
Communications
Software type

0xE0

unsigned
char 1 Get (4)

MAC address data
MAC address data 0xE1 Byte 1: MAC address size

Bytes 2–8: MAC address

unsigned
char

Max.
8 Set/Get (5)

House code data
House code data 0xE2 Byte 1: House code length

Bytes 2–9: House code

unsigned
char

Max.
9 Set/Get (6)

Bind interval data
Bind interval data 0xE3 0x0000: Infinite bind interval.

0x0001–0xFFFF (1–65535sec)

unsigned
short 2 Set/Get

Buffer size data (max bytes)
Buffer size data 0xB9 (1 byte binary) 6–256

Note: The value 256 is indicated by 0x00.

unsigned
char 1 Get (7)

(1) Operating status
Shows operating status of Lower-layer Communications Software.

(2) Fault content
0x0000 : No fault
0x0001–0x0003 : (Unused)
0x0004 : Exchange with lower-layer communications driver inactive

(Indicates state in which messages cannot be sent over the network via the lower-layer
communications driver. Determined by timeout, etc. In this case, only reading from
application software, including this property, is possible. Settings for this fault code will
not be specified.)

 9-34

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

0x0005–0x000F : Open to users
0x0010–0xFFFF : Reserved for future use

(3) Transition states

Transition states for ECHONET communications control processing software are shown below.
Specific code assignments are as follows:

0x0000 : Currently halted
0x0001 : Initializing
0x0002 : Normal operation
0x0003–0x0005 : (Unused)
0x0006 : Normal operation by lower-layer communications driver (hardware) error hold
0x0007–0x0009 : (Unused)
0x000A : Lower-Layer communications driver (hardware) error hold halt
0x000B : (Unused)
0x000C–0x000F : Open to users
0x0010–0xFFFF : Reserved for future use

(4) Version data

Uses a 3-byte binary value to present version information for the lower-layer communication software.
No specific value is stipulated.

(5) Lower-layer Communications Software type

Shows Lower-layer Communications Software type. Specific code assignments are as follows:
0x01=Power line
0x03=Low-power wireless
0x04=Expanded HBS
0x05=IrDA Control
0x06=LonTalk
0x00, 0x02, 0x07–0xFF: Reserved for future use

(6) MAC address data

Sets MAC address starting from Byte 2, with the number of bytes indicated by the value of Byte 1.
The MAC address may be up to 7 bytes long.

(7) House code data

The second and subsequent bytes, the number of which is stipulated by the size data placed in the first
byte position, set the power line house code or specific low power wireless system identification code.
Up to 8 bytes can be used for setup. For the house code and wireless system identification code, see
Part 3.

(8) Bind interval data

Sets the time interval at which a peripheral periodically issues a "bind request" to the host when the
lower-layer communication software is IrDA Control. However, the value 0x0000 represents an

 9-35

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

infinite bind interval, which means that a peripheral does not issue a periodic "bind request" to the host.

(9) Buffer size data

Maximum EDATA size that can be processed by the lower-layer communication software.

 9-36

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.12 Communications Definition Class Group Specifications

There are four communications definition class groups: the status notification method stipulation
communications definition group (class group code: 0x10 to 0x1F), the Set control reception method
stipulation communications definition class group (class group code: 0x20 to 0x2F), the linkage
(action) setting communications definition class group (class group code: 0x30 to 0x3F), and the
linkage (trigger) setting communications definition class group (class group code: 0x40 to 0x4F).
These class groups retain the following settings about the objects (device object, service object, and
profile object) associated with the same node:

1) Setting data about property content notification at the time of a property content change
2) Setting data about periodic property content notification
3) Setting data about nodes that permit property content changes
4) Setting data about linked operations with other objects

The status notification method stipulation communications definition group relates to 1) and 2) above.
The Set control reception method stipulation communications definition class group relates to 3). The
linkage (action) setting communications definition class group and linkage (trigger) setting
communications definition class group relate to 4).
The associations between the objects of these class groups and the objects relevant to the information
retained by the former objects are established by ECHONET object codes. The relationships between
the ECHONET class codes of objects belonging to the communications definition class groups and the
ECHONET object codes of the objects associated with the former objects are as indicated below:

- Agree in the instance code X3.
- Agree in the class code X2.
- Agree in the four low-order bits of the class group code X1.

The four high-order bits of the class group code X1 specify to which one of the four communications
definition class groups an object belongs. The value 0001b selects the status notification method
stipulation communications definition group. The value 0010b selects the Set control reception method
stipulation communications definition class group. The value 0011b selects the linkage (action) setting
communications definition class group. The value 0100b selects the linkage (trigger) setting
communications definition class group.
The settings are retained in the unit of a property. The communications definition setting for a certain
property is retained by an associated communications definition object property having the same
ECHONET property code.
Note that the objects belonging to the communications definition class groups do not have to be
mounted at all times. They can be implemented as needed.
This chapter stipulates the details of the property configurations commonly applicable to the

 9-37

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

communications definition class groups as the communications definition object super class.

9.12.1 Overview of Communications Definition Object Super Class
Specifications

The communications definition object super class properties are inherited and implemented by each
class of the four communications definition class groups. These properties are summarized in Table
9.6.

Table 9.6 List of Communications Definition Object Super Class Configuration Properties
 Contents of Property

 Property Name EPC
 Value range (decimal notation)

 Data Type
Data
Size

(Byte)

Access
Rule

Mandatory
Announ-ce
ment status

change
Remarks

State change announce
properties map 0x9D See Supplement 2 unsigned

char
Max.
17 Get ○

Set properties map 0x9E See Supplement 2 unsigned
char

Max.
17 Get ○

Get properties map 0x9F See Supplement 2 unsigned
char

Max.
17 Get ○

Note: In Announcement at status change, denotes mandatory processing when the
property is implemented.

9.12.2 Property Map

Three property map properties defined for the communications definition object super class retain the
list of properties whose value changes will be subjected to a general broadcast, the list of properties
that can be edited from remote nodes, and the list of properties that can be referenced by remote nodes.
The individual property map property configurations are the same as those defined for the device
object super class (see Section 9.3.11).

 9-38

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.13 Specifications for Status Notification Method Stipulation
Communications Definition Class Group

This section provides detailed specifications for ECHONET objects that belong to the status
notification method stipulation communications definition class group (class group code X1 = 0x10 to
0x1F). Objects belonging to this class group retain the following status notification method settings for
all the properties of the associated objects (objects existing in the same node and having the same class
group code X1 four low-order bits, class code X2, and instance code X3). When a status notification
method is stipulated for an object by the status notification method stipulation communications
definition object, the former object must report the associated property value by the stipulated method.

- Setting data for property content notification at the time of a property content change (including
setting data for the party being communicated with)

- Setting data for periodic property content notification (including the communication cycle and
the other party being communicated with)

The above settings are retained in the unit of a property. The status notification method for a certain
property is retained by an associated status notification method stipulation object property having the
same ECHONET property code. The property to be targeted for status notification method stipulation
is not specified because it is a matter of system design. (Properties to which the above status
notification method is inapplicable cannot exist as a status notification method stipulation object
property. Further, the status notification method cannot be stipulated for the property map properties
(0x9B to 0x9F)). There is no need to set a status notification method for all the properties of associated
objects.
The "fire sensor class status notification method stipulation communications definition object" is
described on the next page as an example for giving the details of properties retained by the objects of
the status notification method stipulation communications definition class group. The fire sensor class
has a class group code X1 of 0x00 and a class code X2 of 0x19. Therefore, the associated status
notification method stipulation object has a class group code X1 of 0x10, a class code X2 of 0x19, and
the same instance code X3 value as fire sensor object X3.
Note that this Version does not support the selection of a secure communication method.

 9-39

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Detailed Specifications for Fire Sensor Class Status Notification Method Stipulation

Communications Definition Object

Class group code : 0x10
Class code : 0x19
Instance code : 0x01–0x7F (0x00: all instance stipulation code)

 Contents of Property
 Property Name EPC

 Value range (decimal notation)
 Data Type

Data
Size

(Byte)

Access
Rule

Mandatory
Announce-
ment status

change
Remarks

Communications definition data for status
notification method stipulation

Communications
definition for operating
status

0x80
 (see below)

unsigned
char 6 Set/

Get

Communications definition data for status
notification method stipulation

Communications
definition for detection
threshold level

0xB0
 (see below)

unsigned
char 6 Set/

Get

Communications definition data for status
notification method stipulation

Communications
definition for fire
detection status

0xB1
 (see below)

unsigned
char 6 Set/

Get

Communications definition data for status
notification method stipulation

Communications
definition for
malfunction status

0x88
 (see below)

unsigned
char 6 Set/

Get

Communications definition data for status
notification method stipulation

Communications
definition for
malfunction content

0x89
 (see below)

unsigned
char 6 Set/

Get

The size of each property is 6 bytes. The property configuration is shown below:

Details are given below:

1) Notification trigger data
 Uses a 1-byte bitmap to retain information about an associated object property having the same

EPC code. The information retained in this manner indicates whether or not to send a
notification in the event of a status change, the method of such status change notification,
whether or not to send a periodic notification, and the method of such periodic notification. The
figure below shows the meanings of the individual bits:

b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0

Stipulates notification at status change 0: No; 1: Yes
Stipulates notification method at status change 0: Individual; 1: Broadcast
All fixed at 0 (reserved for future use)
Stipulates periodic notification 0: No; 1: Yes
Stipulates periodic notification method 0: Individual; 1: Broadcast
All fixed at 0 (reserved for future use)

Notification
trigger data

Status change notification
destination EA data

Periodic notification destination
EA data

Notification
interval data

1-byte 2-byte

2-byte

1-byte

 9-40

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

2) Status change notification destination EA data
 When bit b0 of the notification trigger data indicates that a status change notification will be

made, two bytes are used to retain the ECHONET address of the notification destination or a
set of the broadcast type stipulation code and broadcast target stipulation code. When bit b1 of
the notification trigger data is "individual", the ECHONET address of the notification
destination is retained. When bit b1 of the notification trigger data is "broadcast", the set of the
broadcast type and broadcast target stipulation codes is retained.

3) Periodic notification destination EA data
 When bit b4 of the notification trigger data indicates that a periodic notification will be made,

two bytes are used to retain the ECHONET address of the notification destination or a set of the
broadcast type stipulation code and broadcast target stipulation code. When bit b5 of the
notification trigger data is "individual", the ECHONET address of the notification destination is
retained. When bit b5 of the notification trigger data is "broadcast", the set of the broadcast type
and broadcast target stipulation codes is retained.

4) Notification interval data
 When bit b4 of the notification trigger data indicates that a periodic notification will be made,

one byte is used to retain the periodic notification interval data. The data is retained in the
following format:

b7 b6 b5 b4 b3 b2 b1 b0
※ ※ ☆ ☆ ☆ ☆ ☆ ☆

Stipulates interval.. Unit is stipulated in b7,b6.
Stipulation of interval unit:
 b7:b6=0:0 : 10 sec
 =0:1 : 1 min
 =1:0 : 1 hr
 =1:1 : Reserved for future use

 The combination of bits b6 and b7 indicates the unit of notification interval value. Three

different units are selectable: 10 seconds, 1 minute, and 1 hour. Bits b0 to b5 indicate the
coefficient for the selected unit value. If, for instance, b7:b6 = 0:1 and bits b0 to b5 are 000101b
(notification interval data = 0x45), the notification will be made at 5-minute intervals.

 9-41

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.14 Specifications for Set Control Reception Method Stipulation

Communications Definition Class Group

This section provides detailed specifications for ECHONET objects belonging to the Set control
reception method stipulation communications definition class group (class group code X1 = 0x20 to
0x2F). The objects belonging to this class group retain the following Set control (property value
rewrite) reception method settings for all the properties of the associated objects (objects existing in the
same node and equal in the class group code X1 four low-order bits, class code X2, and instance code
X3). When a remote party whose Set control is rendered acceptable is stipulated for an object by the
Set control reception method stipulation communications definition object, the former object must not
accept the request for a change in an associated property value if the request is not issued from the
stipulated party.

- Maximum registration number of nodes that can be allowed to perform a property rewrite (10
nodes maximum).

- Number of nodes that are allowed to perform a rewrite
- ECHONET addresses of nodes that are allowed to perform a rewrite

The above settings are retained in the unit of a property. The Set control reception method for a certain
property is retained by an associated Set control reception method stipulation object property having
the same ECHONET property code. The property to be targeted for Set control reception method
stipulation is not specified because it is a matter of system design. (Properties for which is allowed to
"Get" only cannot exist as a Set control reception method stipulation object property. Further, the Set
control reception method cannot be stipulated for the property map properties (0x9B to 0x9F)). There
is no need to set a Set control reception method for all the properties of associated objects.
The "fire sensor class Set control reception method stipulation communications definition object" is
described on the next page as an example for giving the details of properties retained by the objects of
the Set control reception method stipulation communications definition class group. The fire sensor
class has a class group code X1 of 0x00 and a class code X2 of 0x19. Therefore, the associated Set
control reception method stipulation object has a class group code X1 of 0x20, a class code X2 of
0x19, and the same instance code X3 value as fire sensor object X3.

 9-42

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fire Sensor Class Communications Definition Objects for Set Control Reception Method
Stipulation: Detailed Specifications

Class group code : 0x20
Class code : 0x19
Instance code : 0x01–0x7F (0x00: all instance stipulation code)

 Contents of Property
 Property Name EPC

 Value range (decimal notation)
 Data Type

Data
Size

(Byte)

Access
Rule

Mandatory
Announce-
ment status

change
Remark

s

Communications definition data for set
control reception method stipulation

Communications
definition for operating
status

0x80
 (see below)

unsigned
char

Max3
2

Set/
Get

Communications definition data for set
control reception method stipulation

Communications
definition for detection
threshold level

0xB0
 (see below)

unsigned
char

Max
32

Set/
Get

Communications definition data for set
control reception method stipulation

Communications
definition for fire
detection status

0xB1
 (see below)

unsigned
char

Max
32

Set/
Get

Communications definition data for set
control reception method stipulation

Communications
definition for
malfunction status

0x88
 (see below)

unsigned
char

Max
32

Set/
Get

Communications definition data for set
control reception method stipulation

Communications
definition for
malfunction content

0x89
 (see below)

unsigned
char

Max
32

Set/
Get

The size of each property is variable up to 32 bytes. The property configuration is shown below:

Details are given below:

1) Maximum number of "Set" receiving nodes
 This is the first byte of the property. The size is 1 byte. It retains the maximum number of nodes

that can be allowed to "Set" in relation to associated object properties having the same EPC code.
For this data, only referencing is valid; a write to this data can be ignored. The acceptable setting
ranges from 1 to 10.

Maximum number
of nodes receiving

"Set"

1-byte
Number of nodes
receiving "Set"

1-byte

"Set" receiving node EA data

2-byte

Broadcast/individual
stipulation data

1-byte

"Set" receiving node EA data

2-byte
 Broadcast/individual

stipulation data

1-byte

・・・

"Set" reception data (1) "Set" reception data (n)

 9-43

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

2) Number of nodes receiving "Set"
 This is the second byte of the property. The size is 1 byte. It retains the number of nodes that are

allowed to "Set" in relation to associated object properties having the same EPC code.

3) Set reception data
 This data consists of the third and subsequent bytes. Its size is 3 bytes. It retains information about

nodes that are allowed to "Set" in relation to associated object properties having the same EPC
code. Contiguous Set reception data can be retained. The maximum number of contiguously
retained Set reception data is equal to the value that is retained as the maximum number of "Set"
receiving nodes. Further, the actually retained number indicates the number of "Set" receiving
nodes.

 The Set reception data consists of two elements: broadcast/individual stipulation data and Set
receiving node EA data. The size of broadcast/individual stipulation data is 1 byte. This data retains
the information that indicates whether the rewrite request message from a node designated by the
Set receiving node EA data retained in the same Set reception data permits a rewrite only when an
individual address is selected, permits a rewrite only when a broadcast address is selected, or
permits a rewrite regardless of whether an individual or broadcast address is selected. The
relationship between permissions and property values is as indicated below:

0x41: Permits only when an individual address is selected.
0x42: Permits only when a broadcast address is selected.
0x43: Permits no matter which address is selected.

 The Set receiving node EA data consists of 2 bytes. It retains the ECHONET address of a node

that is allowed to "Set".

 9-44

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.15 Specifications for Linkage (Action) Setting Communications Definition
Class Group

This section provides detailed specifications for ECHONET objects that belong to the linkage (action)
setting communications definition class group (X1 = 0x30 to 0x3F). The objects belonging to this
class group must transmit a specified message (this message transmission operation is called an
action) when specified conditions are met by the associated property value of an associated object
(object existing in the same node and equal in the class group code X1 four low-order bits, class code
X2, and instance code X3). The objects belonging to this class group retain the conditions (linked
startup conditions and linked startup condition values) specified for a property value and the
configuration of an outgoing message (action message configuration data). When the conditions
specified for a property value are met, it means the following:

Conditions specified for a non-array property
The linked startup conditions are satisfied by the linked startup condition value and by the value of the
associated property of the associated object.

Array properties can also be targeted. When the conditions specified for an array property value are
met, it means the following:

Conditions specified for an array property
The linked startup conditions are satisfied by the linked startup condition value and by the values taken
by all array elements designated by the set of an array element number mask value and masked array
element number in the associated property of the associated object.

The following procedure is performed for array element selection based on the array element number
mask value and masked array element number:

Array element selection method
The array element numbers of the associated property are ANDed with the array element number
mask value. The values derived from ANDing are compared against the masked array element
number. The linked startup conditions are then applied to the match.

The linked startup conditions are roughly divided into the following six types:

- The property value is equal to the linked startup condition value.
- The property value is greater than the linked startup condition value.
- The property value is less than the linked startup condition value.
- The property value is greater than or equal to the linked startup condition value.
- The property value is less than or equal to the linked startup condition value.

 9-45

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

- The property value is not equal to the linked startup condition value.

When the linked startup conditions are met, a message in a designated configuration must be
transmitted. The outgoing message configuration is retained in the outgoing message configuration
data on an individual property basis.
The "fire sensor class linkage (action) setting communications definition object" is described on the
next page as an example for giving the details of properties retained by the objects of the linkage
(action) setting communications definition class group. The fire sensor class has a class group code X1
of 0x00 and a class code X2 of 0x19. Therefore, the associated linkage (action) setting
communications definition object has a class group code X1 of 0x30, a class code X2 of 0x19, and the
same instance code X3 value as fire sensor object X3.
Note that this Version does not support the transmission of secure messages and compound messages.

 9-46

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fire Sensor Class Communications Definition Objects for Linked (Action) Settings:
Detailed Specifications

Class group code : 0x30
Class code : 0x19
Instance code : 0x01–0x7F (0x00: all instance stipulation code)

 Contents of Property
 Property Name EPC

 Value range (decimal notation)
 Data Type

Data
Size

(Byte)

Acces
s Rule

Mandatory
Announce-
ment status

change
Remark

s

Communications definition data for linked
setting (action setting)

Communications
definition for operating
status

0x80
 (see below)

unsigned
char

Max
247

Set/
Get

Communications definition data for linked
setting (action setting)

Communications
definition for detection
threshold level

0xB0
 (see below)

unsigned
char

Max
247

Set/
Get

Communications definition data for linked
setting (action setting)

Communications
definition for fire
detection status

0xB1
 (see below)

unsigned
char

Max
247

Set/
Get

Communications definition data for linked
setting (action setting)

Communications
definition for
malfunction status

0x88
 (see below)

unsigned
char

Max
247

Set/
Get

Communications definition data for linked
setting (action setting)

Communications
definition for
malfunction content

0x89
 (see below)

unsigned
char

Max
247

Set/
Get

The size of each property is variable up to 247 bytes. The property configuration is shown below:

When the associated property is of a non-array type

Action partner EA data

Linked startup
conditions

1-byte
Linked startup
condition value

size data

1-byte

m-byte

Broadcast/in
dividual

1-byte

EA data

2-byte

Action partner
EOJ data

3-byte

Action partner
EPC data

1-byte

ESV data
at action

1-byte

EDT content size
at action

1-byte

EDT data
at action

n-byte

Action message configuration data

Linked startup
condition value

 9-47

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

When the associated property is of an array type

The details of the individual configuration elements are given below:

1) Linked startup conditions
 1-byte information indicating the relationship between the value of the associated property of the

associated object and the linked startup condition value. The linkage (action) setting
communications definition object monitors the value of the associated property of the associated
object or the property's internal array element stipulated by a set of an array element number mask
value and masked array element number. When the linked startup conditions are satisfied by the
monitored value and linked startup condition value, a message transmission takes place in
accordance with the action message configuration data. The following codes are assigned to the
linked startup conditions:

0x00: No linkage.
0x01: The property value is equal to the linked startup condition value. (=)
0x02: The property value is greater than the linked startup condition value. (>)
0x03: The property value is less than the linked startup condition value. (<)
0x04: The property value is greater than or equal to the linked startup condition value. (≧)
0x05: The property value is less than or equal to the linked startup condition value. (≦)
0x06: The property value is not equal to the linked startup condition value. (≠)

2) Linked startup condition value size data
 When the associated property is of a non-array type, this data denotes the size of the linked startup

condition value. If the associated property is of an array type, this data indicates the sum of the sizes
of the array element number mask value, masked array element number, and linked startup
condition value.

3) Array element number mask value
 This value exists when the associated property is of an array type. It is always used in conjunction

Linked startup
conditions

1-byte
 Linked startup

condition value
size data

1-byte

m-byte

Broadcast/in
dividual

1-byte

EA data

2-byte

Action partner
EOJ data

3-byte

Action partner
EPC data

1-byte

ESV data
at action

1-byte

EDT content size
at action

1-byte

EDT data
at action

n-byte

Array element
number mask

value

1-byte

Masked array
element number

1-byte

Action partner EA data

Action message configuration data

Linked startup
condition value

 9-48

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

with the masked array element number. The details are given under "4) Masked array element
number" below.

4) Masked array element number
 This number exists when the associated property is of an array type. It is always used in

conjunction with the array element number mask value to determine what array element of the
associated property is to be monitored. The array element numbers of the associated property are
ANDed with the array element number mask value. The values derived from ANDing are
compared against the masked array element number. The resulting match will be monitored, and
the linked startup conditions are applied to it.

5) Linked startup condition value
 The value of the monitored property or the value compared against a stipulated array element value

under the linked startup conditions. Its size is indicated by the linked startup condition size data.

6) Action partner EA data
 3-byte information for stipulating the destination node to which an action message is to be

transmitted when the linked startup conditions are met. It consists of 1-byte broadcast/individual
stipulation data and 2-byte EA data.

- Broadcast/individual stipulation data
 This data specifies whether the ECHONET address presented by the EA data is a broadcast

address or individual address. The value to be taken is 0x42 for a broadcast address or 0x41 for
an individual address.

- EA data
 This data indicates the ECHONET address of a node that is to be requested to perform an

action.
 When a broadcast address is selected by the broadcast/individual stipulation data, the broadcast

type stipulation code is placed in the first byte position with the broadcast target stipulation code
in the second byte position. The codes to be used and their meanings must comply with the
specifications set forth in Section 4.2.2, "Source/Destination ECHONET Address
(SEA/DEA)".

 When an individual address is selected by the broadcast/individual stipulation data, the Net ID
is placed in the first byte position with the Node ID in the second byte position.

7) Action partner EOJ data
 3-byte information for stipulating the destination ECHONET object to which an action message is

to be transmitted when the linked startup conditions are met. The class group code X1 is placed in
the first byte position, with the class code X2 in the second byte position and the instance code X3
in the third byte position. The codes to be used and their meanings must comply with the
specifications set forth in Section 4.2.6, " ECHONET Objects (EOJ)".

 9-49

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

8) Action partner EPC data
 1-byte information for stipulating the ECHONET property that the action message operates on.

The code to be used and its meaning must comply with the specifications for the target object.

9) ESV data at action
 1-byte information for stipulating a code that defines the operation request to be issued to the

property stipulated by the action partner EPC data that is owned by the ECHONET object
stipulated by the action partner EA data and action partner EOJ data. The code to be used and its
meaning must comply with the specifications set forth in Section 4.2.8, "ECHONET Service
(ESV)".

10) EDT content size at action
 When the operation is stipulated by the ESV data at action is a write or an operation on an array,

the content to be written or the target array element number is required as an EDT. The EDT size
data at action is 1-byte information for indicating the number of bytes used for the EDT data at
action, which indicates the EDT. When the ESV data at action indicates an ESV that does not
require an EDT, the value 0x00 must be taken.

11) EDT data at action
 Being variable in length, this data indicates the contents of the EDT. The size of this data is

indicated by the EDT content size at action.

 9-50

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.16 Specifications for Linkage (Trigger) Setting Communications Definition
Class Group

This section provides detailed specifications for ECHONET objects belonging to the linkage (trigger)
setting communications definition class group (X1 = 0x40 to 0x4F). The objects belonging to this
class group must rewrite the contents of a stipulated property of an associated object (object existing in
the same node and equal in the class group code X1 four low-order bits, class code X2, and instance
code X3) with a stipulated value when a message received by the communication middleware is
found to be in compliance with stipulated conditions.
The linkage (trigger) setting communications definition objects function in relation to a property
having the same ECHONET property code as the object property targeted for linkage setup. They
retain the configuration of a trigger message (trigger message configuration data) and the information
about the values (property setting size and property setting) to be written into the associated property
when the linkage trigger conditions are met. The trigger message configuration data consists of the
following elements:

- Partner EA data
- EA mask data
- Partner EOJ data
- Instance code mask data
- EPC data
- ESV data
- EDT size data
- EDT content
- EDT comparison data

The linkage trigger conditions are met when a message satisfying all the following conditions is
received:

Condition 1:

The source ECHONET address (SEA) in the message must match the partner EA data. However,
the use of the EA mask data makes it possible to register two or more source ECHONET
addresses as the match target.

Condition 2:

The source ECHONET object (SDEOJ) in the message must match the partner EOJ data.
However, the use of the instance code mask data makes it possible to register two or more source
ECHONET objects of the same type as the match target.

 9-51

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Condition 3:
The ECHONET property (EPC) in the message must match the EPC data.

Condition 4:

The ECHONET service (ESV) in the message must match the ESV data.

Condition 5:

The relationship between the EDT value and EDT data in the message must comply with the EDT
comparison data. For an ECHONET property code whose EPC data is an array property, the
relationship among all the array elements stipulated by the EDT data must comply with the EDT
comparison data.

The EDT comparison data is classified into six types as indicated below:

- The EDT value in the message is equal to the EDT data.
- The EDT value in the message is greater than the EDT data.
- The EDT value in the message is less than the EDT data.
- The EDT value in the message is greater than or equal to the EDT data.
- The EDT value in the message is less than or equal to the EDT data.
- The EDT value in the message is not equal to the EDT data.

The "fire sensor class linkage (trigger) setting communications definition object" is described on the
next page as an example for giving the details of properties retained by the objects of the linkage
(trigger) setting communications definition class group. The fire sensor class has a class group code
X1 of 0x00 and a class code X2 of 0x19. Therefore, the associated Set control reception method
stipulation object has a class group code X1 of 0x40, a class code X2 of 0x19, and the same instance
code X3 value as fire sensor object X3.
Note that this Version does not support linkage based on compound messages.

 9-52

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Fire Sensor Class Communications Definition Objects for Linked (Trigger) Settings:
Detailed Specifications

Class group code : 0x40
Class code : 0x19
Instance code : 0x01–0xFF (0x00: all instance stipulation code)

 Contents of Property
 Property Name EPC

 Value range (decimal notation)
 Data Type

Data
Size

(Byte)

Access
Rule

Mandatory
Announce-
ment status

change
Remarks

Communications definition data for linked
setting (trigger setting)

Communications
definition for operating
status

0x80
 (see below)

unsigned
char

Max
247

Set/
Get

Communications definition data for linked
setting (trigger setting)

Communications
definition for detection
threshold level

0xB0
 (see below)

unsigned
char

Max
247

Set/
Get

Communications definition data for linked
setting (trigger setting)

Communications
definition for fire
detection status

0xB1
 (see below)

unsigned
char

Max
247

Set/
Get

Communications definition data for linked
setting (trigger setting)

Communications
definition for
malfunction status

0x88
 (see below)

unsigned
char

Max
247

Set/
Get

Communications definition data for linked
setting (trigger setting)

Communications
definition for
malfunction content

0x89
 (see below)

unsigned
char

Max
247

Set/
Get

The size of each property is variable up to 247 bytes. The property configuration is shown below:

Details of the individual configuration elements are given below:

1) Partner EA data
 This data consists of 2 bytes and retains the ECHONET address for an "individual" transmission. It

is always used in conjunction with the EA mask data and is compared against the source
ECHONET address (SEA) of a received message. The details are given under "2) EA mask data".

2) EA mask data
 This data consists of 2 bytes. It is used in conjunction with the partner EA data to check whether

Condition 1 is met. Condition 1 is met when the AND of the source ECHONET address (SEA) of
the received message and the EA mask data matches the partner EA data.

Trigger message configuration data

Partner EA
data

2-byte

EA mask
data

2-byte

Partner EOJ data

3-byte

Instance
code mask

1-byte

EPC data

1-byte

ESV data

1-byte

1-byte

EDT size
data

EDT data

m-byte

1-byte
 EDT

comparison
data

1-byte
 Property

setting size data

n-byte

Property
setting

 9-53

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

3) Partner EOJ data
 This data consists of 3 bytes and retains an ECHONET object code. It is always used in

conjunction with the instance code mask data and compared against the source ECHONET object
code (SEOJ) of the received message. The details are given under "4) Instance code mask data".

4) EA mask data
 This data consists of 1 byte. It is used in conjunction with the partner EOJ data to check whether

Condition 2 is met. Condition 2 is met when the AND of the third byte (instance code X3) of the
received message source ECHONET object code (SEOJ) and the instance code mask data
matches the partner EOJ data.

5) EPC data
 This data consists of 1 byte and retains an ECHONET property code. Condition 3 is met when the

ECHONET property code (EPC) of the received message matches the EPC data.

6) ESV data
 This data consists of 1 byte and retains an ECHONET service code. Condition 4 is met when the

ECHONET service code (ESV) of the received message matches the ESV data.

7) EDT size data
 This data consists of 1 byte and retains the size of the EDT size data (in bytes).

8) EDT content
 The EDT content retains ECHONET data. The size of the EDT content is variable and indicated

by the EDT size data. When the EDT content concerns an array element property, the first two
bytes represent an array element number. The EDT content is always used in conjunction with the
EDT comparison data and compared against the ECHONET data (EDT) in the received message.
When the EDT content relates to a non-array property, the entire region is subjected to comparison.
When it relates to an array property, on the other hand, the region excluding the first two bytes of
array element number data is subjected to comparison. The details are given under "9) EDT
comparison data".

9) EDT comparison data
 This data retains one byte of information that indicates how the received message ECHONET data

(EDT) is to be compared against the EDT content. The following codes are assigned to the EDT
comparison data:

0x00: No linkage.
0x01: The EDT value in the message is equal to the EDT data. (=)
0x02: The EDT value in the message is greater than the EDT data. (>)

 9-54

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

0x03: The EDT value in the message is less than the EDT data. (<)
0x04: The EDT value in the message is greater than or equal to the EDT data. (≧)
0x05: The EDT value in the message is less than or equal to the EDT data. (≦)
0x06: The EDT value in the message is not equal to the EDT data. (≠)

 Condition 5 is met when the above conditions are satisfied within the region targeted for

comparison between the EDT value in the message and the EDT data.

9) Property setting size data
 This data consists of 1 byte. It retains the size (in bytes) of the information (property setting) to be

written into a stipulated property of the associated object when the linkage trigger conditions (five
individual conditions) are met.

10) Property setting
 This data retains the information to be written into a stipulated property of the associated object

when the linkage trigger conditions (five individual conditions) are met. The size of this data is
variable and indicated by the property setting size data.

 9-55

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

9.17 Specifications for Secure Communication Access Property Setup
Class Group

The use of the "write service" for a write into the properties of the secure communication access
property setup object in a User-Key-based authentication/enciphered message format makes it
possible to set accessible properties in accordance with the authentication levels for the properties of
the device objects, service objects, profile objects, and communications definition objects.
The class group codes and class codes indicate a secure communication access property setup object
for device objects, profile objects, and service objects whose underlined * portions of codes are in
agreement. Further, accessible properties of a communications definition object agree with the settings
for the accessible properties of a device objects, profile object, or service object associated with the
communications definition object.

Class group code : 0x5*
Class code : 0x**
Instance code : 0x01–0x7F (0x00: all instance stipulation code)

 Contents of Property

 Property Name EPC
 Value range (decimal notation)

 Data Type
Data
Size

(Byte)

Access
Rule

Mandatory
Announce-
ment status

change
Remarks

Sets a property that can be subjected to SetM
at anonymous level.

SetM property map
setting (Anonymous
Level)

0xCB
See Supplement 2.

unsigned
char

x Max 17

Max.
17

Set/
Get (1)

Sets a property that can be subjected to GetM
at anonymous level.

GetM property map
setting (Anonymous
Level)

0xCC
See Supplement 2.

unsigned
char

x Max 17

Max.
17

Set/
Get (2)

Sets a property that can be subjected to Set at
anonymous level.

Set property map
setting (Anonymous
Level)

0xCE
See Supplement 2.

unsigned
char

x Max 17

Max.
17

Set/
Get (3)

Sets a property that can be subjected to Get at
anonymous level.

Get property map
setting (Anonymous
Level)

0xCF
See Supplement 2.

unsigned
char

x Max 17

Max.
17

Set/
Get (4)

Sets a property that can be subjected to SetM
at service provider level.

SetM property map
setting (Service
Provider Level)

0xDB
See Supplement 2.

unsigned
char

x Max 17

Max.
17

Set/
Get (5)

Sets a property that can be subjected to GetM
at service provider level.

GetM property map
setting (Service
Provider Level)

0xDC
See Supplement 2.

unsigned
char

x Max 17

Max.
17

Set/
Get (6)

Sets a property that can be subjected to Set at
service provider level.

Set property map
setting (Service
Provider Level)

0xDE
See Supplement 2.

unsigned
char

x Max 17

Max.
17

Set/
Get (7)

Sets a property that can be subjected to Get at
service provider level.

Get property map
setting (Service
Provider Level)

0xDF
See Supplement 2.

unsigned
char

x Max 17

Max.
17

Set/
Get (8)

(1) SetM property map setting (Anonymous Level)
 The "write service" (ESV = 0x60, 0x61) is used in a User-Key-based authentication/enciphered

message format to set properties that can be subjected to SetM at anonymous level for device

 9-56

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

objects, profile objects, and service objects having the secure communication access property setup
class group code and class code whose underlined * portions are in agreement.

 The property value must be in the property map description format defined in Part 2, Supplement 2,
"Property Map Description Format".

 When the "read service" (ESV = 0x62) is performed in the User-Key-based
authentication/enciphered message format in relation to the captioned property, the map of
properties that can be subjected to SetM at anonymous level is obtained

(2) GetM property map setting (Anonymous Level)
 The "write service" (ESV = 0x60, 0x61) is used in a User-Key-based authentication/enciphered

message format to set properties that can be subjected to GetM at anonymous level for device
objects, profile objects, and service objects having the secure communication access property setup
class group code and class code whose underlined * portions are in agreement.

 The property value must be in the property map description format defined in Part 2, Supplement 2,
"Property Map Description Format".

 When the "read service" (ESV = 0x62) is performed in the User-Key-based
authentication/enciphered message format in relation to the captioned property, the map of
properties that can be subjected to GetM at anonymous level is obtained

(3) Set property map setting (Anonymous Level)
 The "write service" (ESV = 0x60, 0x61) is used in a User-Key-based authentication/enciphered

message format to set properties that can be subjected to Set at anonymous level for device objects,
profile objects, and service objects having the secure communication access property setup class
group code and class code whose underlined * portions are in agreement.

 The property value must be in the property map description format defined in Part 2, Supplement 2,
"Property Map Description Format".

 When the "read service" (ESV = 0x62) is performed in the User-Key-based
authentication/enciphered message format in relation to the captioned property, the map of
properties that can be subjected to Set at anonymous level is obtained

(4) Get property map setting (Anonymous Level)
 The "write service" (ESV = 0x60, 0x61) is used in a User-Key-based authentication/enciphered

message format to set properties that can be subjected to Get at anonymous level for device objects,
profile objects, and service objects having the secure communication access property setup class
group code and class code whose underlined * portions are in agreement.

 The property value must be in the property map description format defined in Part 2, Supplement 2,
"Property Map Description Format".

 When the "read service" (ESV = 0x62) is performed in the User-Key-based
authentication/enciphered message format in relation to the captioned property, the map of
properties that can be subjected to Get at anonymous level is obtained

 9-57

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

(5) SetM property map setting (Service Provider Level)
 The "write service" (ESV = 0x60, 0x61) is used in a User-Key-based authentication/enciphered

message format to set properties that can be subjected to SetM at Service Provider Level for device
objects, profile objects, and service objects having the secure communication access property setup
class group code and class code whose underlined * portions are in agreement.

 The property value must be in the property map description format defined in Part 2, Supplement 2,
"Property Map Description Format".

 When the "read service" (ESV = 0x62) is performed in the User-Key-based
authentication/enciphered message format in relation to the captioned property, the map of
properties that can be subjected to SetM at Service Provider Level is obtained

(6) GetM property map setting (Service Provider Level)
 The "write service" (ESV = 0x60, 0x61) is used in a User-Key-based authentication/enciphered

message format to set properties that can be subjected to GetM at service provider level for device
objects, profile objects, and service objects having the secure communication access property setup
class group code and class code whose underlined * portions are in agreement.

 The property value must be in the property map description format defined in Part 2, Supplement 2,
"Property Map Description Format".

 When the "read service" (ESV = 0x62) is performed in the User-Key-based
authentication/enciphered message format in relation to the captioned property, the map of
properties that can be subjected to GetM at service provider level is obtained

(7) Set property map setting (Service Provider Level)
 The "write service" (ESV = 0x60, 0x61) is used in a User-Key-based authentication/enciphered

message format to set properties that can be subjected to Set at service provider level for device
objects, profile objects, and service objects having the secure communication access property setup
class group code and class code whose underlined * portions are in agreement.

 The property value must be in the property map description format defined in Part 2, Supplement 2,
"Property Map Description Format".

 When the "read service" (ESV = 0x62) is performed in the User-Key-based
authentication/enciphered message format in relation to the captioned property, the map of
properties that can be subjected to Set at service provider level is obtained

(8) Get property map setting (Service Provider Level)
 The "write service" (ESV = 0x60, 0x61) is used in a User-Key-based authentication/enciphered

message format to set properties that can be subjected to Get at service provider level for device
objects, profile objects, and service objects having the secure communication access property setup
class group code and class code whose underlined * portions are in agreement.

 The property value must be in the property map description format defined in Part 2, Supplement 2,
"Property Map Description Format".

 When the "read service" (ESV = 0x62) is performed in the User-Key-based

 9-58

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
9 ECHONET Objects: Detailed Specifications

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

authentication/enciphered message format in relation to the captioned property, the map of
properties that can be subjected to Get at service provider level is obtained

 10-１

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Chapter10 ECHONET Security Communication Specification

10.1 ECHONET Security Problems
• Power lines, radio, etc. are vulnerable to attack by hackers.
• Impersonation and falsification are prevented. Falsification is detected.
• Access is restricted by authentication to cope with illegal access from outside the network.
• Wiretap is prevented by enciphering.

10.2 ECHONET Security Policy
 It is necessary to clarify to what extent ECHONET be observed. The following three actions shall be

performed to provide secure ECHONET communication.
• ① To prevent wiretap Common key system enciphering
• ② To detect falsification Hash signature
• ③ To prevent impersonation Authentication header

 10-2

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.3 Positioning of ECHONET in Protocol Stack
• Realization of secure communication independent from media
• Possible authentication between nodes having different media

Transmission
media

Power
line

Communication
Middleware

Application Software

Service
Middleware

Device
Object

Service
Object

Service
API

PROTOCOL difference absorption unit

ECHONET communication unit

Basic APIBasic API

Lower-layer
communication

sotware

Small-
Powered

radio
Expand

HBS
IrDA

Control LonTalk®

A Individual Lower-layer
Communication InterfaceB C D E

Power
line

Small-
Powered

radio
Twisted
Pair wire

Infrared
ray

Power
line

LonTalk® is a registered trademark of Echelon Corporation in USA and other countries.
All other trademarks belong to each owner.。

Common Key Encipherment Function
Common Lowe-layer

Communications Interface

Authentication Function

Fig. 10.1 Secure Communication in ECHONET

 10-3

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.4 Configuration of Secure Communication Messages in ECHONET

10.4.1 ECHONET Secure Message Format
 Refer to “Fig. 4.1-2 ECHONET Frame in Secure Message Format” in “4.2 Message Structure”.

Detailed specifications for each Message element are provided below.

 10.4.2 ECHONET Header (EHD)
 Refer to “4.2.1 ECHONET Header (EHD)”.

10.4.3 ECHONET byte Counter (EBC)
 Indicates size of EDATA unit, which is shown in “Fig. 4.1-2 ECHONET Frame in Secure

Message Format”. When specifying a secure message, the size of the EDATA unit must be within the
range of 9-256 bytes (0x09-0xFF, 0x00, 0x00 indicates 256). 9 bytes is the minimum size for a secure
message. The ECHONET secure message format comprises SHD (1 byte) + PBC (1 byte) + EDATA (6
byte) + BCC (1 byte) + PDG (0 byte).

 10-4

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.4.4 ECHONET Secure Header (SHD)
 The ECHONET secure header (SHD) comprises the basic cipher and authentication header format,

the basic cipher header format, the Maker Key cipher and authentication header format, and the Maker
Key cipher header format, which are shown in Fig. 10.2.

 Enciphering communication and authentication for the basic cipher and authentication header
format and the Maker Key cipher and authentication header format are performed in an ECHONET
secure message.

 For the basic cipher format and Maker Key cipher format, only enciphering communication is
performed in an ECHONET secure message.

���������������������������������������
���������������������������������������
���������������������������������������

SNF

��
��
��

MAS

��
��
��Enciphering Unit

SKH ：Secure Key Header (1Byte)
MKI ：Maker Key Index (4Byte)
AHD ：Authentication Header (1Byte)
SNF ：Sequence Number Field (4Byte)
MAS ：Message Authentication Signature (8Byte)

AHDMaker Key
Cipher Authentication
Header Format

Basic Cipher Header Format

SHD： Secure Head (1-18Byte)

MKI

��������������������������������������
��������������������������������������
��������������������������������������SNF

��
��
��MASAHDBasic Cipher Authentication

Header Format

Maker Key
Cipher Header Format MKI

SKH

SHD

SKH

SKH

SKH

Fig. 10.2 ECHONET Secure Header

 10-5

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.4.5 Secure Key Header (SKH)

 Size is 1 byte. Presence/absence of authentication, cipher system, and secure user level are
illustrated.

 In the case of b6=0 with authentication, and b3:b2:b1:b0 = 0:0:1:0, the ECHONET secure header
(SHD) forms the Maker Key cipher and authentication header format shown in Fig. 10.2, and enciphering
communication and authentication are performed in the ECHONET secure message.

 In the case of b6=1 without authentication, and b3:b2:b1:b0 = 0:0:1:0, the ECHONET secure
header (SHD) forms the Maker Key cipher header format shown in Fig. 10.2, and only enciphering
communication is performed in the ECHONET secure message.

 In the case of b6=1 without authentication, and b3:b2:b1:b0 ≠ 0:0:1:0, the ECHONET secure
header (SHD) forms the Basic cipher header format shown in Fig. 10.2, and only enciphering
communication is performed in the ECHONET secure message.

 The Secure User Level corresponds to the authentication and enciphering level in ECHONET

secure communication. The Secure User Level shown in b3:b2:b1:b0 is described below.

• Supervisor Level
 Coding and decoding, or authentication is performed by Serial Key of ECHONET device. Serial

Key is set to the device when manufacturing the ECHONET device, and displayed on a case of the
device. The inhabitant who supervises the access right to the device uses this Serial Key during the initial
setting of the common key (User Secure key, Service Provider Key) to the ECHONET device.

• User Level

 Coding and decoding, or authentication is performed by User Secure Key. The common key is
supervised by the inhabitant (a supervisor of the domain). It sets one common key for one domain. This is
used in operating the information which the inhabitant does not desire to disclose to those other than the
inhabitant.

• Maker Level

 Coding and decoding, or authentication is performed by Maker Secure Key. Maker Secure Key is
supervised by a maker of the device. This is used in operating the information which the maker does not
desire to disclose to those other than the maker.

• Service Provider Level

 Coding and decoding, or authentication, is performed by the Service Provider Secure Key. The
Service Provider Secure Key transfers rights to a third party when supervision of stipulated devices is
entrusted to the third party by the owner of the device. It is used in manipulating information which is not
meant to be seen by persons other than the third party in question.

 10-6

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

0 ＃ ＃ ＃ ＃ ＃ ＃ ＃

Indicates Secure User Level.
b3:b2:b1:b0=0:0:0:0:Serial Key Index
b3:b2:b1:b0=0:0:0:1:User Secure Key Index
b3:b2:b1:b0=0:0:1:0:Maker Secure Key Index
b3:b2:b1:b0=0:0:1:1～1:1:1:1:Service Provider Secure Key Index

b7 b6 b5 b4 b3 b2 b1 b0

for future reserved

Indicate presence/absence of authentication.
b6=0:with authentication
b6=1:without authentication

Indicates Cipher system.
b5:b4=0:0 :DES Cipher System
b5:b4=0:1, 1:0, 1:1 :for future reserved

Fig. 10.3 Secure Key Header (SKH)

 10-7

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.4.6 Maker Key Index (MKI)

 Size is 4 bytes. The Maker Key Index comprises the Main Index MIX (3 bytes) and the Sub Index
(SIX) (1 byte). Fig. 10.4 shows the structure of the Maker Key Index (MKI). The Main Index (MIX) uses
the maker code specified by ECHONET. The Sub Index is controlled by the maker with the allocated
maker code.

 When the Maker Key Index is stipulated as b3:b2:b1:b0=0:0:1:0 in Secure Key Header (SKH), this
Maker Key Index (MKI) is used for the Maker Key Cipher and Authentication Header Format or the
Maker Key Cipher Header Format in the ECHONET Secure Header (SHD). The index of the common
key used for cipher and authentication in the Maker Key Cipher and Authentication Header Format or the
Maker Cipher Header Format is shown below.

MIX

MIX :Main Index (3 Byte)
SIX :Sub Index (1 Byte)

MKI

SIX

Fig. 10.4 Maker Key Index (MKI)

 10-8

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.4.7 Authentication Header (AHD)

 Size is 1 byte. The Authentication Header (AHD) indicates the kind of authentication request and
authentication response, and the success or failure of authentication.

 When b6=0; with authentication stipulated in the Secure Key Header (SKH), this authentication
header (AHD) is used for the cipher and authentication header format in the Secure Header (SHD).

1 0 0 0 0 0 ＃ ＃

b7 b6 b5 b4 b3 b2 b1 b0

Fixed (reserved for future use)

Requests authentication.
Indicates kind of authentication response.
b1 = 0; authentication request.
b1 = 1; authentication response.

When b1 = 1, indicates success or failure.
b0 = 1: authentication successful.
b0 = 0: authentication failed.
When b1 = 0, b0 = 0 fixed.

b5:b4:b3:b2=0:0:0:0 fixed

※ Unless b7:b6 = 1:0, meaning of other bits will be specified otherwise.
Fig. 10.5 Authentication Header (AHD)

10.4.8 Sequence Number Field (SNF)
 Size is 4 bytes. The initial value is determined randomly.
 When b6=0; with authentication stipulated in the Secure Key Header (SKH), the Sequence

Number Field (SNF) is used for cipher and authentication header format in the Secure Header (SHD).
 The sequence number is controlled by the service requested party of the authentication and

enciphering message for each node of the service requesting party. The initial value of the sequence
number is determined randomly on a node cold start. On a warm start, the sequence number is determined
randomly or by reading and using the sequence number stored in non-volatile memory. The service
requesting party increments the sequence number by 1 and keeps the value when authentication is
successful.

 The service requesting party uses the sequence number previously received from the service
requested party.

 10-9

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.4.9 Message Authentication Signature (MAS)

 Size is 8 bytes. When the Secure User Level shown in b3:b2:b1:b0 of the Secure Key Header
(SKH) in Fig. 10.3 is Supervisor Level, User Level, or Service Provider Level, the keyed hash value is
computed using the enciphering function from the plain text of SKH, AHD and SNF of SEA, DEA, EBC,
and SHD among the frames of secure message format I (plain text) shown in “Error! No source is found.”
The Secure Key is used for computing the keyed hash value using the enciphering function.

���
���
���Keyed Hash Value

SEA DEA EBC SKH SNF

Hash Function
 (Enciphering Function)

Secure Key

���
���
���MASAHD

MAS: Message Authentication
Signature (8 Byte)

Fig. 10.6 Message Authentication Signature (Supervisor Level Authentication/User Level

Authentication/Service Provider Level Authentication)

 When the Secure User Level shown in b3:b2:b1:b0 of Secure Key Header (SKH) in Fig. 10.3 is Maker
Level, the keyed hash value is computed using the enciphering function from the plain text of SKH, AHD and
SNF of SEA, DEA, EBC, and SHD among the frames of secure message format I (plain text) shown in “Error!
No source is found.” The Secure Key is used for computing the keyed hash value using the enciphering
function.

���
���
���
���

Keyed Hash Value

SEA DEA EBC SKH SNF

Hash Function
(Enciphering Function)

 Secure Key

���
���
���MASAHD

MAS: Message Authentication
Signature (8 Byte)

MKI

Fig. 10.7 Message Authentication Signature (Maker Level Authentication)

 10-10

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

 The Cipher Block Chaining Mode is used in computing the Message Authentication Signature

(MAS). The initial vector of the register is set to 0x0000 0000 0000 0000. Fig. 10.8 shows how the Cipher
Block Chaining Mode is used to compute the Message Authentication Signature. The processing size is
the input-output size of the block enciphering even at any arrow in Fig. 10.8. When the Secure User Level
shown in b3:b2:b1:b0 of the Secure Key Header (SKH) in Fig. 10.3 is Supervisor Level, User Level, or
Service Provider Level, the input block is constituted by plain text + zero-padding of SKH, AHD and
SNF of SEA, DEA, EBC, and SHD, and the output block to the input block is defined as the Message
Authentication Signature (MAS).

 When the Secure User Level shown in b3:b2:b1:b0 of the Secure Key Header (SKH) in Fig. 10.3 is
Maker Level, the input block is constituted by plain text + zero-padding of SKH, AHD and SNF of SEA,
DEA, EBC, and SHD, and the output block to the input block is defined as the Message Authentication
Signature (MAS).

Block
Enciphering

Register

OutputInput

Secure Key

Fig. 10.8 Calculation of Message Authentication Signature (MAS) by Cipher Block Chaining Mode

 10-11

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.4.10 Plain Text ECHONET Data Part Byte Counter (PBC)

 Size is 1 byte. The Plain Text ECHONET Data Part Byte Counter (PBC) indicates the size of
Plain Text ECHONET Data (PEDATA).

10.4.11 Plain Text ECHONET Data (PEDATA)
 Plain Text ECHONET Data (PEDATA) takes the basic message format (Message Format I) shown

in Fig. 10.9 when b2:b1:b0=1:0:0 in the ECHONET Header (EHD).
 The size of Plain Text ECHONET Data (PEDATA) is 6-246 bytes in the Basic Cipher Header

Format and the Maker Key Cipher Header Format shown in Fig. 10.2.
 The size of Plain Text ECHONET Data (PEDATA) is 6-234 bytes in the Basic Cipher and

Authentication Header Format and the Maker Key Cipher and Authentication Header Format shown in
Fig. 10.2.

PEDATA

OHD SEOJ DEOJ EPC ESV EDT

Fig. 10.9 Plain Text ECHONET Data (PEDATA)

10.4.12 Block Check Code (BCC)
 Size is 1 byte. Block Check Code (BCC) indicates the block check code (horizontal parity) of SEA,

DEA, EBC, SHD, PBC and PEDATA among the frames of Secure Message Format I (plain text) shown
in “Error! No source is found.”

10.4.13 Padding (PDG)
 Size is 0-7 bytes. Padding is performed by 0x00 to set the plain text size for enciphering to a 64-bit

unit when the frame of Secure Message Format I (plain text) shown in “Error! No source is found.”
constitutes an ECHONET Secure Communication Frame based on “10.5.1 Common Key Block
Enciphering”

 10-12

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.5 Enciphering
 A common key system is used for the common key of the Secure Message Format I (plain text)

frame shown in “Error! No source is found.”

10.5.1 Common Key Block Enciphering
 A block enciphering algorithm is used to convert the 64 bits of plain text into 64 bits of ciphertext

using a common key. Of the frames of Secure Message Format I (plain text) shown in “Error! No source
is found,” SNF (cipher and authentication header format only), MAS (cipher and authentication header
format only), PBC, PEDATA, BCC and PDG are coded to form the EDATA unit of the Secure Message
Format, thereby forming an ECHONET Secure Communication Frame.

PEDATA

������������������������������������
������������������������������������
������������������������������������
������������������������������������

64bit

BCC

To set to padding
64 bit unit.

Ciphertext

������������������������������������
������������������������������������
������������������������������������
������������������������������������

64bit

������������������������������������
������������������������������������
������������������������������������
������������������������������������

64bit

������������������������������������
������������������������������������
������������������������������������
������������������������������������
・・・・

PDG

PEDATA Byte Counter

SNF MAS PBC

������������������������������������
������������������������������������
������������������������������������
������������������������������������

64bit

Cipher Authentication
Header Format

Encipherment

PEDATA

BCC

To set to padding
64 bit unit.

PDG

PEDATA Byte Counter

PBC

������������������������������������
������������������������������������
������������������������������������64bit

������������������������������������
������������������������������������
������������������������������������・・・・

������������������������������������
������������������������������������
������������������������������������64bit

Encipherment

Ciphertext

Cipher Header Format

Fig. 10.10 Coded Portion of Secure Message Format I (Plain text)

 After the received message is decoded in Fig. 10.10, BCC is checked. If different, the received
message is abandoned.

 10-13

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.6 Authentication Sequence

10.6.1 Authentication Sequence
 In the authentication and enciphering message format, the authentication request message of the

service requesting party shall use individual stipulation for DEA, and if DEA is broadcast, the service
requested party must abandon the message. SNF is controlled by the service requested party for each node
of the service requesting party.

 In the authentication sequence, the EOJ Instance Broadcast (lower class 1 byte:0x00 of EOJ) shall
not be used, and the service requested party must abandon the message.

 Fig. 10.11 shows ECHONET Secure Frame and Authentication Sequence for Supervisor Level
Authentication, User Level Authentication, and Service Provider Level Authentication. Fig. 10.12 shows
the ECHONET Secure Frame and Authentication Sequence for Maker Level Authentication.

 10-14

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

SKH=0x00: with authentication, Supervisor Level Authentication
 0x01: with authentication, User Level Authentication
 0x03 – 0x0F: with authentication, Service Provider Level Authentication

AHD=0x80 : Authentication request

Next sequence number (1 increment)

Keyed hash value of SEA-SNF

Keyed hash value of SEA-SNF

EHD SEA DEA EBC SKH

����������������������
����������������������
����������������������SNF

������������������������������������
������������������������������������
������������������������������������MAS

������������������������
������������������������
������������������������EDATA

�������������
�������������
�������������BCC

�������������������
�������������������
�������������������PDG

�������������
�������������
�������������PBC

EHD SEA DEA EBC SKH

����������������������
����������������������
����������������������SNF

������������������������������������
������������������������������������
������������������������������������MAS

������������������������
������������������������
������������������������EDATA

�������������
�������������
�������������BCC

�������������������
�������������������
�������������������PDG

�������������
�������������
�������������PBC

AHD

AHD

AHD=0x83; Authentication response: authentication passed.

Sequence number previously received from service requested party

Authentication request
from service requesting
party

Authentication response
of service requested party
when “Authentication
successful.”

Sequence number previously sent to service requesting party; initial
sequence number for initial transmission.

Keyed hash value of SEA-SNF

EHD SEA DEA EBC SKH

����������������������
����������������������
����������������������SNF

������������������������������������
������������������������������������
������������������������������������MAS

������������������������
������������������������
������������������������EDATA

�������������
�������������
�������������BCC

�������������������
�������������������
�������������������PDG

�������������
�������������
�������������PBCAHD

AHD=0x82; Authentication response: authentication failed.

Authentication
 response of service
requested party when
“Authentication failed.”

SKH=0x00: with authentication, Supervisor Level Authentication
 0x01: with authentication, User Level Authentication
 0x03 – 0x0F: with authentication, Service Provider Level Authentication

Copy message of authentication
request for PBC and others

Fig. 10.11 ECHONET Secure Frame and Authentication Sequence

(Supervisor Level Authentication/User Level Authentication/Service Provider Level Authentication)

 10-15

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Copy message of authentication request
for PBC and others

SKH=0x02: with authentication,
Maker Level Authentication

AHD=0x80 : Authentication request

Next sequence number (1 increment)

Keyed hash value of SEA-SNF

Keyed hash value of SEA-SNF

EHD SEA DEA EBC SKH

���������������������
���������������������
���������������������SNF

����������������������������������
����������������������������������
����������������������������������MAS

����������������������
����������������������
����������������������EDATA

�������������
�������������
�������������BCC

������������������
������������������
������������������PDG

�������������
�������������
�������������PBC

EHD SEA DEA EBC SKH

���������������������
���������������������
���������������������SNF

����������������������������������
����������������������������������
����������������������������������MAS

����������������������
����������������������
����������������������EDATA

�������������
�������������
�������������BCC

������������������
������������������
������������������PDG

�������������
�������������
�������������PBC

AHD

AHD

AHD=0x83; Authentication response: authentication passed.

Sequence number previously received from service
requested party

Authentication
request from
service requesting
party

Authentication
response of service
requested party when
“Authentication
successful.”

MKI

MKI

Sequence number previously sent to service requesting
party; Initial sequence number for initial transmission.

Keyed hash value of SEA-SNF

EHD SEA DEA EBC SKH

���������������������
���������������������
���������������������SNF

����������������������������������
����������������������������������
����������������������������������MAS

����������������������
����������������������
����������������������EDATA

�������������
�������������
�������������BCC

������������������
������������������
������������������PDG

�������������
�������������
�������������PBCAHD

AHD=0x82; Authentication response: authentication failed.

Authentication
response of service
requested party when
“Authentication
failed.”

MKI

SKH=0x02: with authentication,
Maker Level Authentication

Fig. 10.12 ECHONET Secure Frame and Authentication Sequence

(Maker Level Authentication)

 Fig. 10.13 shows the authentication sequence. The service requesting party generates MAS from
the SNF (received from the service requested party in the previous authentication), SEA, DEA, EBC,
SKH, AHD, and the common key, and transmits it to the service requested party.

 The service requested party checks that the received SNF agrees with the SNF previously
transmitted to the client. It also checks that the received MAS agrees with the MAS computed from the
SNF, received SEA, DEA, EBC, SKH, AHD, and the common key.

 When both SNF and MAS agree, the request included in PEDATA is executed. The sequence
number (SNF) is incremented by 1, and an authentication response, including SNF and MAS, is
transmitted.

 If either SNF or MAS does not agree with the other, i.e., if authentication fails, MAS is generated
from the SNF (previously transmitted to the service requesting party), SEA, DEA, EBC, SKH, AHD, and
the common key, and an authentication response and authentication failure are transmitted with PBC
messages and other authentication request messages of the service requested party, including the SNF
previously transmitted to the service requesting party as a PBC message and other authentication response

 10-16

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

and authentication failure messages.

Authentication request

Generate keyed authentication
signature (MAS) from the sequence
number (SNF) received from the
service requested party at the
previous authentication, SEA, DEA,
EBC, SKH, AHD, and the common
key, and transmit it to the service
requested party.

Service requested party Service requesting party

The service requested party checks
that the received sequence number
(SNF) agrees with the sequence
number previously transmitted to
the client.

Sequence number keyed
authentication signature

Compute the keyed authentication
signature (MAS) from the sequence
number (SNF), received SEA,
DEA, EBC, SKH, AHD, and the
common key, and check that the
keyed authentication signature
a g r e e s w i t h t h e r e c e i v e d
authentication signature (MAS).

When both agree, execute the
request included in PEDATA.
Increment the sequence number by
1 . G e n e r a t e t h e k e y e d
authentication signature (MAS)
from the sequence number field,
SEA, DEA, EBC, SKH, AHD, and
the common key, and transmit
authentication response.

When either does not agree with the
o t h e r , g e n e r a t e t h e k e y e d
authentication signature (MAS)
f r o m t h e s e q u e n c e n u m b e r
previously sent to the client, SEA,
DEA, EBC, SKH, AHD, and the
c o m m o n k e y , a n d t r a n s m i t
authentication response when
authentication fails.

Authentication response

Sequence number keyed
authentication signature

Fig. 10.13 Authentication Sequence

 10-17

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

 Fig. 10.14 shows the authentication sequence in the first authentication request from the node of the
service requesting party to the node of the service requested party. Because the service requesting party
has not previously received a sequence number from the service requested party, the service requesting
party transmits the authentication request to the service requested party and includes an arbitrary sequence
number in the sequence number field (SNF).

 Because the received sequence number is different from the controlled sequence number, the
service requested party transmits an “authentication failed” response, including the controlled sequence
number, to the service requesting party. The service requesting party acquires the normal sequence
number from the sequence number field (SNF) of the “authentication failed” response and transmits the
authentication request, including the acquired sequence number in the sequence number field (SNF), to
the service requested party.

Authentication request Since no sequence number is
received from the service requested
p a r t y , g e n e r a t e a k e y e d
authentication signature (MAS)
from an arbitrary sequence number
(SNF), SEA, DEA, EBC, SKH,
AHD, and the common key, and
transmit it to the service requested
party.

Service requested party Service requesting party
Control and maintain the initial
sequence number.

Sequence number keyed
authentication signature

Since the sequence numbers do not
agree with each other, generate the
keyed authentication signature
(M AS) f ro m t he ma i nt a in ed
sequence number field, SEA, DEA,
EBC, SKH, AHD, and the common
key, and transmit authentication
response when authentication fails.

Authentication response when
authentication is successful.

Sequence number keyed
authentication signature

Authentication response
when authentication fails.

Sequence number keyed
authentication signature

The service requested party checks
that the received sequence number
(SNF) agrees with the controlled
and maintained sequence number.

Generate a keyed authentication
signature (MAS) from the sequence
number (SNF) received from the
service requested party, SEA, DEA,
EBC, SKH, AHD, and the common
key, and transmit it to the service
requested party.

Authentication request

Sequence number keyed
authentication signature Compute the keyed authentication

signature (MAS) from the sequence
number (SNF), received SEA,
DEA, EBC, SKH , A HD a nd
common key, and check that the
keyed authentication signature
a g r e e s w i t h t h e r e c e i v e d
authentication signature (MAS).

When both agree, execute the
request included in PEDATA.
Increment the sequence number by
1 . G e n e r a t e t h e k e y e d
authentication signature (MAS)
from the sequence number field,
SEA, DEA, EBC, SKH, AHD, and
the common key, and transmit
authentication response.

The service requested party checks
that the received sequence number
(SNF) agrees with the sequence
number previously transmitted to
the client.

Fig. 10.14 Initial Authentication Sequence

 10-18

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.7 Management of Shared Keys for Secure Communication

10.7.1 Detailed Specifications of Common Key Setting Class for Secure
Communication

 Refer to “9.9.1 Detailed Specifications of Common Key Setting Node Class for Secure
Communication”.

10.7.2 Methods to Establish Shared Keys for Secure Communication
 The common key for secure communication is initially set and operated differently depending on

whether the key is a User Key, a Service Provider Key, or a Maker Key.
 For a User Key, initial setting of the common key for secure communication is performed by

inputting the Serial Key of the newly registered device off-line, coding the common key (User Key) for
secure communication by Serial Key, and transmitting it to the newly registered device using the
authentication and cipher message format.

 For a Service Provider Key, initial setting of the common key for secure communication is
performed by coding the common key (Service Provider Key) for secure communication using the
common key (User Key) for secure communication, and transmitting it to the newly registered device
using the authentication and cipher message format.

 The common key (User Key and Service Provider Key) for secure communication codes the new
common key using the existing common key, and updates it at a predetermined period.

 For a Maker Key, the setting of the common key for secure communication is to be secretly
controlled for each Maker Key Index (MKI) by the Maker, and is to be basically set by embedding in the
node when shipped by the manufacturer. The common key for secure communication (Maker Key) is not
to be updated.

 The ECHONET Secure Communication Specification of ECHONET Ver. 2.10 assumes that only
one key setting function mounting node is present in the domain.

 10-19

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.7.3 Common Key (User Key) Setting Sequence for Secure Communication

 Fig. 10.16 shows the setting sequence of the common key (User Key) for Secure Communication.
The initial setting of the common key (User Key) for Secure Communication shall be performed by
transferring the newly registered device to the common key initial setting mode. The newly registered
device performs authentication using the authentication and cipher message format by the self-Serial Key
only when transferring to the common key initial setting mode.

 Fig. 10.15 shows the ECHONET secure frame and the setting sequence of the common key for
secure communication. Setting of the common key (User Key) for secure communication is performed
using Supervisor Level Authentication.

 10-20

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

SKH=0x02: with authentication, Supervisor Level Authentication
AHD=0x80 : Authentication request

Next sequence number of initial sequence number
 (1 increment)

Keyed hash value of SEA-SNF

Keyed hash value of SEA-SNF

EHD SEA DEA EBC SKH

�����������������������
�����������������������
�����������������������SNF

�������������������������������������
�������������������������������������
�������������������������������������MAS

�������������������������
�������������������������
�������������������������EDATA

�������������
�������������
�������������BCC

��������������������
��������������������
��������������������PDG

�������������
�������������
�������������PBC

EHD SEA DEA EBC SKH

�����������������������
�����������������������
�����������������������SNF

�������������������������������������
�������������������������������������
�������������������������������������MAS

�������������������������
�������������������������
�������������������������EDATA

�������������
�������������
�������������BCC

��������������������
��������������������
��������������������PDG

�������������
�������������
�������������PBC

AHD

AHD

AHD=0x83; Authentication response: authentication passed.

Sequence number previously received from
service requested party

Authentication
request from
service requesting
party

Authentication
response of service
requested party for
“Authentication
successful.”

Initial sequence number

Keyed hash value of SEA-SNF

EHD SEA DEA EBC SKH
�����������������������
�����������������������
�����������������������

SNF
�������������������������������������
�������������������������������������
�������������������������������������

MAS
�������������������������
�������������������������
�������������������������

EDATA
�������������
�������������
�������������
BCC

��������������������
��������������������
��������������������

PDG
�������������
�������������
�������������
PBCAHD

AHD=0x82; Authentication response: authentication failed.

Authentication
response of service
requested party for
“Authentication
failed.”

SKH=0x02: with authentication, Supervisor Level Authentication

Fig. 10.15 ECHONET Secure Frame for Setting Common Key (User Key) for Secure Communication

 A newly registered device determines the initial sequence number randomly on a cold start.
 The key setting function mounting node prepares the common key and writes it in the common key

setting (User Key) property for secure communication corresponding to the Key Index of the newly
registered device in the cipher and authentication message format using the Serial Key.

 The newly registered device performs authentication using the self-Serial Key.
 The newly registered device decodes the common key coded by the self-Serial Key if

authentication is successful, and acquires the common key (User Key). When authentication is successful,
the newly registered device increments SNF (Sequence number) by 1, prepares the authentication
response message using the self-Serial Key, and transmits it to the key setting function mounting node.

 If authentication fails, the newly registered device generates MAS from the initial value of SNF,
SEA, DEA, EBC, SKH, AHD, and the common key, and transmits the initial value of SNF, and
authentication response and authentication failure, including MAS.

 Upon receipt of an authentication response and authentication failure, the key setting function

 10-21

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

mounting node generates MAS from the received SNF, SEA, DEA, EBC, SKH, AHD, and the common
key, and transmits the cipher and authentication message, including the received SNF and MAS, to the
newly registered device.

 If an authentication response is not received, the key setting function mounting node re-transmits
the cipher and authentication message, including the SNF previously transmitted to the newly registered
device and MAS, to the newly registered device.

Ciphered common key
The key setting function mounting
node prepares the common key, and
writes it to the common key setting
property corresponding to the Key
Index of the newly registered
device according to the cipher and
authentication message format
using the serial Key.

Authentication response

After authentication of the user by
PIN, etc. to the key setting function
mounting node, the serial Key of
the newly registered device is
entered by keypad, etc. to the key
setting function mounting node.

Newly registered device Key setting function mounting node

The newly r eg is t e r ed dev ice
performs authentication using the
s e l f - s e r i a l K e y . W h e n
authentication is successful, the
common key coded using the self-
serial Key is decoded, and the
common key is acquired.

The newly r eg is t e r ed dev ice
prepares the authentication response
message using the self-serial Key,
and transmits it to the key setting
function mounting node.

The key setting function mounting
node receives the authentication
response message from the newly
registered device, and checks
writing of the common key in the
common key set t ing property
corresponding to the Key Index of
the newly registered device.

The newly r eg is t e r ed dev ice
determines the initial sequence
number randomly.

Authentication request

Transfer the newly registered
device to the common key initial
setting mode.

The newly r eg is t e r ed dev ice
increments the sequence number by
1 when authentication is successful.

Fig. 10.16 Common Key (User Key) Setting Sequence for Secure Communication

 10-22

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.7.4 Common Key (Service Provider Key) Setting Sequence for Secure
Communication

 Fig. 10.18 shows the setting sequence of the common key (Service Provider Key) for secure
communication. The key setting function mounting node writes the common key (Service Provider Key)
for secure communication of the node profile object mounted on the newly registered device in the secure
communication common key (Service Provider Key) property using the User Key.

 Fig. 10.17 shows the common key (Service Provider Key) setting sequence for secure
communication, and the ECHONET secure frame. The common key (Service Provider Key) for secure
communication is set by User Level Authentication.

SKH=0x02: with authentication, User Level Authentication
AHD=0x80 : Authentication request

Next sequence number (1 increment)

Keyed hash value of SEA-SNF

 Keyed hash value of SEA-SNF

EHD SEA DEA EBC SKH

�����������������������
�����������������������
�����������������������SNF

�������������������������������������
�������������������������������������
�������������������������������������MAS

�������������������������
�������������������������
�������������������������EDATA

�������������
�������������
�������������BCC

��������������������
��������������������
��������������������PDG

�������������
�������������
�������������PBC

EHD SEA DEA EBC SKH

�����������������������
�����������������������
�����������������������SNF

�������������������������������������
�������������������������������������
�������������������������������������MAS

�������������������������
�������������������������
�������������������������EDATA

�������������
�������������
�������������BCC

��������������������
��������������������
��������������������PDG

�������������
�������������
�������������PBC

AHD

AHD

AHD=0x83; Authentication response: authentication successful.

Sequence number previously received from
service requested party

Authentication request
from service
requesting party

Authentication
response of service
requested party when
“Authentication
successful.”

Sequence number previously sent to
service requesting party

Keyed hash value of SEA-SNF

EHD SEA DEA EBC SKH

�����������������������
�����������������������
�����������������������SNF

�������������������������������������
�������������������������������������
�������������������������������������MAS

�������������������������
�������������������������
�������������������������EDATA

�������������
�������������
�������������BCC

��������������������
��������������������
��������������������PDG

�������������
�������������
�������������PBCAHD

AHD=0x82; Authentication response: authentication failed.

Authentication
response of service
requested party when
“Authentication
failed.”

SKH=0x02: with authentication, User Level Authentication

 Fig. 10.17 ECHONET Secure Frame in Setting Common Key (Service Provider Key) for Secure
Communication

 The key setting function mounting node prepares the common key (Service Provider Key), and
writes it in the common key (Service Provider Key) setting property for secure communication
corresponding to the Key Index of the newly registered device in the cipher and authentication message

 10-23

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

format using the User Key.
 The newly registered device performs authentication using the User Key.
 The newly registered device decodes the common key for secure communication coded by User

Key if authentication is successful, and acquires the common key (Service Provider Key) for secure
communication. The newly registered device increments SNF (Sequence number) by 1, prepares an
authentication response message using the User Key, and transmits it to the key setting function mounting
node.

 If authentication fails, the newly registered device generates MAS from the SNF previously
transmitted to the key setting function mounting node, SEA, DEA, EBC, SKH, AHD, and the common
key, and transmits an authentication response and authentication failure, including MAS and the SNF
previously transmitted to the key setting function mounting node.

 Upon receipt of an authentication response and authentication failure, the key setting function
mounting node generates MAS from the received SNF, SEA, DEA, EBC, SKH, AHD, and the common
key, and transmits the cipher and authentication message, including the received SNF and MAS, to the
newly registered device.

 If an authentication response is not received, the key setting function mounting node re-transmits
the cipher and authentication message, including MAS and the SNF previously transmitted to the newly
registered device, to the newly registered device.

 10-24

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Ciphered common key

The key se t t i ng f unc t i on
mounting node prepares the
common key, and writes it to
t h e c o m m o n k e y s e t t i n g
property (Service Provider
Key) corresponding to the Key
Index of the newly registered
device according to the cipher
and authentication message
format using the User Key.

Authentication response

Newly registered device Key setting function mounting node

The newly registered device
performs authentication using
t h e U s e r K e y . W h e n
authentication is successful, the
common key coded using the
User Key is decoded, and the
common key is acquired.

The newly registered device
prepares an authentication
response message using the
User Key, and transmits it to
t h e k e y s e t t i n g f u n c t i o n
mounting node.

The key setting function mounting
node receives the authentication
response message from the newly
registered device, and checks
writing of the common key in the
common key sett ing proper ty
(S e r v i c e P r o v i d e r K e y)
corresponding to the Key Index of
the newly registered device.

Authentication request

Perform authentication of the
user using PIN, etc. to the key
setting function mount ing
node.

Fig. 10.18 Common Key (Service Provider Key) for Secure Communication

 10-25

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.7.5 Setting of Common Key (Maker Key) for Secure Communication
 Regarding the setting of the common key (Maker Key) for secure communication, the common

key for secure communication shall be secretly controlled for each Maker Key Index (MKI) by the Maker,
and is to be basically set by embedding in the node when shipped by the manufacturer.

 The application maintains the common key (Maker Key) for secure communication corresponding
to the Maker Key Index (MKI) to be secretly controlled with the controller for managing and controlling
the node (device) by the Maker. This achieves access to the node (device) by secure communication using
a common key (Maker Key) for secure communication corresponding to the Maker Key Index (MKI).

 No specific system shall be stipulated for setting the common key (Maker Key) for secure
communication to the node.

 10-26

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.7.6 Common Key Distribution System
 The common key for secure communication codes the new common key using the existing

common key and distributes it at predetermined intervals. Fig. 10.21 shows the distribution sequence of
the common key for secure communication.

 Fig. 10.19 shows the ECHONET Secure Frame and Authentication Sequence for Supervisor Level
Authentication, User Level Authentication, and Service Provider Level, and Fig. 10.20 shows
ECHONET Secure Frame and Authentication Sequence for Maker Level Authentication.

SKH=0x00: with authentication, Supervisor Level Authentication
 0x01: with authentication, User Level Authentication
 0x03 – 0x0F: with authentication, Service Provider Level Authentication

AHD=0x80 : Authentication request

Next sequence number (1 increment)

Keyed hash value of SEA-SNF

Keyed hash value of SEA-SNF

EHD SEA DEA EBC SKH

�����������������������
�����������������������
�����������������������SNF

�������������������������������������
�������������������������������������
�������������������������������������MAS

�������������������������
�������������������������
�������������������������EDATA

�������������
�������������
�������������BCC

�������������������
�������������������
�������������������PDG

��������������
��������������
��������������PBC

EHD SEA DEA EBC SKH

�����������������������
�����������������������
�����������������������SNF

�������������������������������������
�������������������������������������
�������������������������������������MAS

�������������������������
�������������������������
�������������������������EDATA

�������������
�������������
�������������BCC

�������������������
�������������������
�������������������PDG

��������������
��������������
��������������PBC

AHD

AHD

AHD=0x83; Authentication response: authentication passed.

Sequence number previously received from
service requested party

Authentication request
from service requesting
party

Authentication response
of service requested party
when “Authentication
successful.”

Sequence number previously sent to service
 requesting party

Keyed hash value of SEA-SNF

EHD SEA DEA EBC SKH

�����������������������
�����������������������
�����������������������SNF

�������������������������������������
�������������������������������������
�������������������������������������MAS

�������������������������
�������������������������
�������������������������EDATA

�������������
�������������
�������������BCC

�������������������
�������������������
�������������������PDG

��������������
��������������
��������������PBCAHD

AHD=0x82; Authentication response: authentication failed.

Authentication
response of service
requested party when
“Authentication
failed.”

SKH=0x00: with authentication, Supervisor Level Authentication
 0x01: with authentication, User Level Authentication
 0x03 – 0x0F: with authentication, Service Provider Level Authentication

Fig. 10.19 ECHONET Secure Frame in Distributing Common Key

(Supervisor Level Authentication/User Level Authentication/Service Provider Level Authentication)

 10-27

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Authentication
request from service
requesting party

Authentication
response of service
requested party
when
“Authentication
successful.”

Authentication
response of service
requested party
when
“Authentication
failed.”

SKH=0x02: with authentication, Maker Level Authentication
AHD=0x80 : Authentication request

Next sequence number (1 increment)

Keyed hash value of SEA-SNF

Keyed hash value of SEA-SNF

EHD SEA DEA EBC SKH

�����������������������
�����������������������
�����������������������SNF

�������������������������������������
�������������������������������������
�������������������������������������MAS

������������������������
������������������������
������������������������EDATA

�������������
�������������
�������������BCC

�������������������
�������������������
�������������������PDG

��������������
��������������
��������������PBC

EHD SEA DEA EBC SKH

�����������������������
�����������������������
�����������������������SNF

�������������������������������������
�������������������������������������
�������������������������������������MAS

������������������������
������������������������
������������������������EDATA

�������������
�������������
�������������BCC

�������������������
�������������������
�������������������PDG

��������������
��������������
��������������PBC

AHD

AHD

AHD=0x83; Authentication response: authentication passed.

Sequence number previously received from
service requested party

MKI

MKI

Sequence number previously sent to
service requesting party

Keyed hash value of SEA-SNF

EHD SEA DEA EBC SKH
�����������������������
�����������������������SNF

�������������������������������������
�������������������������������������MAS

������������������������
������������������������EDATA

�������������
�������������BCC

�������������������
�������������������PDG

��������������
��������������PBCAHD

AHD=0x82; Authentication response: authentication failed.

MKI

SKH=0x02: with authentication, Maker Level Authentication

Fig. 10.20 ECHONET Secure Frame in Distributing Common Key

(Maker Level Authentication)

 The key setting function mounting node prepares a new common key (New Master Key), and
writes it in the common key setting property corresponding to the Key Index of the device in the
authentication and enciphering message format using the common key (Pre Master Key).

 The device performs authentication using the common key (Pre Master Key).
 If authentication is successful, the device decodes the new common key (New Master Key) using

the common key (Pre Master Key) and acquires the new common key.
 If authentication fails, the device generates MAS from the SNF previously transmitted to the key

setting function mounting node, SEA, DEA, EBC, SKH, AHD, and the common key, and transmits an
authentication response and authentication failure, including MAS and the previously transmitted SNF, to
the key setting function mounting node.

 10-28

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Ciphered new common
key

The key setting function mounting node
prepares a new common key (New
Master Key), and writes it in the
c o m m o n k e y s e t t i n g p r o p e r t y
corresponding to the Key Index of the
device according to the authentication
and enciphering message format using
the common key (Pre Master Key).

Device Key setting function mounting node

The device performs authentication
using the common key (Pre Master
Key) . When authent ica t ion i s
successful, the device decodes a new
common key (New Master Key)
using the common key (Pre Master
Key) and acquires the new common
key.

The device prepares an authentication
response message using the common
key (Pre Master Key) and transmits it
to the key setting function mounting
node.

The key setting function mounting node
receives the authentication response
message, and checks writing of the
common key in the common key setting
property corresponding to the Key
Index of the device.

Pre Master Key

New common key
(New Master Key)

Pre Master Key

New common key
 (New Master Key)

Authentication request

Authentication response

Fig. 10.21 Common Key Distribution Method

 10-29

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.7.7 Synchronous Updating System for Common Key

 When the common key for secure communication is updated at predetermined intervals using the
key setting function mounting node, the time difference for acquiring the new common key (New Master
Key) is generated for each device in the domain because distribution of the common key for secure
communication to the device is performed by individual authentication and enciphering communication.

 As a framework for transferring the common key from Pre Master Key to New Master Key
synchronously in the domain node, the node profile object mounted on the device being transferred from
Pre Master Key and New Master Key using the authentication and enciphering message is written in the
common key transfer property. The common key and completion of update from Pre Master Key to New
Master Key are written in the common key setting property of the node profile object mounted on the
device indicated in “10.7.6 Common Key Distribution System”.

Table 10.1 Common Key Used by Node for Transmission/Reception when Common Key is

Transferred
Transition condition of common key Common key

transmission
Common key reception

Distribution of common key completed.

After New Master Key is written in the
common key setting property, and before
writing in common key transfer property

Pre Master Key Pre Master Key
New Master Key

During transfer of common key

Before writing of transfer condition in
common key transfer property

New Master Key Pre Master Key
New Master Key

Updating of common key completed.

After writing completion of common key
update in common key transfer property

New Master Key New Master Key

 10-30

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.7.8 Avoiding Omission of Devices Without Power When Updating Common
Key

Trials shall be performed successively from the Serial Key controlled by the key setting function
mounting node. If power has not been supplied to the device for a long time, generation of the common
key may be different during the period without power.

 Thus, generation of the common key of the device is controlled, and the common key is set to the
device of a different generation of common key according to the common key distribution method shown
in Fig. 10.21. The new common key is coded using the common key of the generation for each device
and transmitted to the device.

 After a warm start, the device performs the common key updating sequence. The common key
setting request property write request is transmitted in an authentication and enciphering message to the
common key distribution request property of the key setting function mounting class.

 When the key setting function mounting node receives the write request in the common key
distribution request object, it performs the common key distribution sequence for secure communication
described in “10.7.6 Distribution System of Common Key”.

 10-31

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Ciphered new
common key

The key setting function mounting
node prepares a new common key
(New Master Key), and writes it in
the common key setting property
corresponding to the Key Index of
the device accord ing to the
authentication and encipherment
message format using the common
key (Pre Master Key).

Device Key setting function mounting node

The device performs authentication
using the common key (Pre Master
Key). When authen ticat ion is
successful, the device decodes a new
common key (New Master Key)
using the common key (Pre Master
Key), and acquires the new common
key.

T h e d e v i c e p r e p a r e s t h e
authentication response message
using the common key (Pre
Master Key) and transmits it to
t h e k e y s e t t i n g f u n c t i o n
mounting node.

The key setting function mounting
node receives the authentication
response message, and checks
writing of the common key in the
common key setting property
corresponding to the Key Index of
the device.

Pre Master Key

New common key
 (New Master Key)

Pre Master Key

New common key
(New Master Key)

Authentication request

Authentication response

The device transmits a request for
writing in the common key setting
request property by the authentication
and enciphering message to the
de tec t e d k ey se t t ing fu n c t io n
mounting class.

Common key setting
request

Fig. 10.22 Method for Avoiding Omission When Updating Common Key

 10-32

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.8 Node Profile Property Stipulation for ECHONET Secure Communication

 The “common key for secure communication” and “transfer of common key for secure
communication” setting properties are stipulated in the node profile class to be used for initial setting and
updating of the ECHONET secure communication common key. These properties are essential for
mounting secure communication.

 For details of these properties, refer to “9.11.1 Detailed Specifications of Node Profile Class”.

10.9 Access Limitation
 In ECHONET secure communication, access to the properties of the ECHONET object of the

requested party is limited based on the authentication level of the ECHONET object of the requesting
party. In the node of the requesting party, access is limited in a different manner by the ECHONET object
of the requested party.

 There are four levels of authentication:
• Supervisor authentication
• User Level authentication
• Maker Level authentication
• Service Provider Level authentication

 ECHONET secure communication includes the following five access limit levels corresponding to
the four authentication levels listed above and cases of no authentication. All access limit levels need not
be supported in the mounting mode.

• Access limit level when inhabitant changes access rules for ECHONET device (Supervisor Level):

Access is permitted only to objects with Supervisor authentication.
• Access limit level to device used by inhabitant (User Level): Access is permitted only to objects with

User Level authentication.
• Access limit level to device maker (Maker Level): Access is permitted only to objects with Maker

Level authentication.
• Access limit level to application user entrusted by the inhabitant (Service Provider Level): Access is

permitted only to objects with Service Provider Level authentication.
• Access limit level without authentication (Anonymous Level): Access is permitted from any object,

without authentication.

 Access rules corresponding to each access limit level are determined and set when the ECHONET

device is developed or when system operation is designed during the installation of each ECHONET
object mounted on the ECHONET node.

 Accessible properties (based on the authentication level of each device object property), the service
object, the profile object, and the communication definition object shall be set using “9.17 Secure
Communication Access Property Setting Class”.

 Thus, access to the ECHONET object side of the requested party by the ECHONET object of the

 10-33

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

requesting party is limited by the self-requesting authentication level. This results in a different view of the
ECHONET object of the requested party. Fig. 10.23 shows an example of mounting a device object under
four access limit levels.

 The present version does not stipulate access rules with individual ECHONET objects.

 The ECHONET node on the request-receiving side must be authenticated by separately controlling

the key by access limit level and by authentication key index. This means that, for example, if a number of
service providers are controlled, the ECHONET node must separately control and authenticate each
service provider.

 In addition, authentication must be performed individually by the ECHONET object of the
requesting party.

実装

ECHONET規格
機器クラス

実装された
機器オブジェクト

実際に外部に公開される
機器オブジェクトのビュー

User Level認証
オブジェクト

Maker Level認証
オブジェクト

Service Provider Level認証
オブジェクト

認証されていない(Anonymous
Level認証)オブジェクト

変換例：
一部のプロパティのみ公開

変換例：
一部のプロパティのみ公開

変換例：
一部のプロパティのみ公開し、
かつアクセスルールを変更

変換例：
一部のプロパティのみ公開し、
かつアクセスルールを変更

実装されたECHONETオブジェクト

:Set/Get(SetM/GetM)
:Get(GetM)

Fig. 10.23 Mounting a Device Object Under Four Access Limitation Levels (Example)

 As described above, the ECHONET object of the requesting party is viewed differently by the
ECHONET object of the requested party based on the self-requested authentication level. The following
items are stipulated for the property map stipulated as a property of the ECHONET object in order to
understand which access rules are stipulated in the ECHONET object of the requested party. The
following stipulations shall be applied if secure communication is supported.

 When the Get service request is received for Set Property Map, Get Property Map, SetM Property
Map, and GetM Property Map, a list of the properties applicable to Set, Get, SetM, and GetM is prepared
on the authentication level of the Get service request message and returned as the property map. The
format of the responding property shall follow the descriptive format of the property map described in the

ECHONET Standard
Device Class

Mounting

Mounted ECHONET Object

Mounted Device Object

Conversion example: Only some

View of Device Object to be disclosed
outside

Conversion example: Only some
properties are disclosed.

Conversion example: Only some
properties are disclosed, and access
specification is changed.

Conversion example:
Only some properties are disclosed, and
access specification is changed

User Level Authentication
Object

Maker Level Authentication
Object

Service Provider Level Authentication
Object

Non-authenticated (Anonymous Level
Authentication) Object

 10-34

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

appendix to Part 2.

 Specific examples will be described below.
 It is assumed that the device object shown in Fig. 10.24 is mounted on the device. The person

mounting the device designs the access rules shown in Fig. 10.25. However, note that the Set and Get
rules shown in the figure are only examples.

 It is also assumed that the object access rules follow Fig. 10.25. When the service request is actually
received, the service requesting party object is authenticated, and it is determined whether or not the
service request has been received according to the access rules for the given authentication level.

 In addition, access rules and the property map vary with the authentication level. This means that if
the reading service is requested for Set Property Map, Get Property Map, SetM Property Map, and GetM
Property Map based on the authentication level, the property map for the given authentication level is
returned as a response. Fig. 10.26 shows the content of the response in the above example.

 10-35

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Example of Device Object

 Property code Property content
Place of installation 0x81 Living room(0x09)
Maker code 0x8A 0x000000
Present transmission (w) 0xE8 0x004F
Alarm threshold transmission (w) 0xE9 0x00FF
Watt-hour (kWh) 0xE0 0x11223344
Error code for maintenance 0xF0 0x0000
Set Property Map 0x9E Described below
Get Property Map 0x9F Described below

Fig. 10.24 Device Object (Example)

 アクセスルー

Get
Get

Get
Get
Get

Get
Set/Get

ー

User
Level

Get
Get

Get
Get
Get

ー
ー

Get

Maker
Level

Get
Get

Get

ー
Get

Get
Get

ー

Service
Provider

Level

Get
Get

Get

ー
ー

ー
ー

ー

Anonymous
Level

0 X9E

プロパティ
コード

0 X9F

0 X81
0 X8A

0 XE8

0 XE0

0 XE9

0 XF0

サポート
アクセス
ルール

Get
Get

Get
Get
Get

Get
Set/Get

Get

Support Access Specification

Access
Specifi-
cation

Property
Code

The UserLevel/MakerLevel access rule is embedded in the device.

Fig. 10.25 Mounting Access Specification (Example)

Property value to be returned varies with authentication
level at which access is made.

(Some are different from actual EPC.)

 10-36

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Service Provider Level

Service Provider Level

Maker Level

Maker Level

User Level

0 x00

User Level

0 x06,{ 0x81,0x8A,0xE8,0xF0,0x9E,0x9F }

0 x00

0 x06,{ 0x81,0xE8, 0xE9,0xE0,0x9E,0x9F }

0 x07,{0x81,0x8A,0xE8,0xE9,0xE0,0x9E,0x9F}

0 x01,{0xE9}
Anonymous Level 0 x00

Anonymous Level 0 x03,{0x81,0xpE,0x9F}
認証レベルと応Get プロパティマッ

認証レベルと応Set プロパティマッAuthentication Level and Response Set Property Map

Authentication Level and Response Get Property Map

Fig. 10.26 Response Property Map Content Based on Authentication Level

 10-37

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
10 ECHONET Security Communication Specification

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

10.10 Security Communication Access Property Setting Class Group
 Refer to “9.17 Specifications for Security Communication Access Property Setting Class Group”.

 i

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
Supplement 1 References

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Supplement 1 References

 (1) EIAJ ET-2101 Home Bus System, Electronic Industries Association of Japan
Technical Division
Electronic Industries Association of Japan
Tel: +81-3-3213-1075

 (2) EIAJ ET-2101 Home Bus System (Addendum), Electronic Industries Association of Japan
Technical Division
Electronic Industries Association of Japan
Tel: +81-3-3213-1075

 (3) EIAJ RC-5202 Data Outlet for Home Bus System, Electronic Industries Association of Japan

Technical Division
Electronic Industries Association of Japan
Tel: +81-3-3213-1075

 (4) JEM 1439 Housekeeping Command Code Assignment for Use in Home Bus System, Electronic Industries

Association of Japan
General Affairs Division
Electronic Industries Association of Japan
Tel: +81-3-3581-4841

 ii

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
Supplement2 Property Map Description Format

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Supplement 2 Property Map Description Format

When there are fewer than 16 properties, description format (1) below is followed; when there are 16 or
more, description format (2) is followed.

Description format (1)
Byte 1 : Number of properties. Displayed in binary.
Byte 2 and higher : List of property codes (1-byte code).

Description format (2)
Byte 1 : Number of properties. Displayed in binary.
Bytes 2–17 : In the 16-byte table below, the bit location showing existing property codes is set to 1,

and properties are listed in order starting with Byte 2.

 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Byte 2 80 90 A0 B0 C0 Ｄ0 Ｅ0 F0
Byte 3 81 91 A1 B1 C1 Ｄ1 Ｅ1 F1
Byte 4 82 92 A2 B2 C2 Ｄ2 Ｅ2 F2
Byte 5 83 93 A3 B3 C3 Ｄ3 Ｅ3 F3
Byte 6 84 94 A4 B4 C4 Ｄ4 Ｅ4 F4
Byte 7 85 95 A5 B5 C5 Ｄ5 Ｅ5 F5
Byte 8 86 96 A6 B6 C6 Ｄ6 Ｅ6 F6
Byte 9 87 97 A7 B7 C7 Ｄ7 Ｅ7 F7
Byte 10 88 98 A8 B8 C8 Ｄ8 Ｅ8 F8
Byte 11 89 99 A9 B9 C9 Ｄ9 Ｅ9 F9
Byte 12 8A 9A AA BA CA ＤA ＥA FA
Byte 13 8B 9B AB BB CB ＤB ＥB FB
Byte 14 8C 9C AC BC CC ＤC ＥC FC
Byte 15 8Ｄ 9Ｄ AＤ BＤ CＤ ＤＤ ＥＤ FＤ
Byte 16 8Ｅ 9Ｅ AＥ BＥ CＥ ＤＥ ＥＥ FＥ
Byte 17 8F 9F AF BF CF ＤF ＥF FF

Note: For each bit, 0 = no property; 1 = property exists.

 iii

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
Supplement3 All Router Date Description Format

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Supplement 3 All Router Data Description Format

Byte 1 : Number of routers
Byte 2 and higher : The following router data set exists for all routers.

 (Router data Byte 1: Router ID
 Byte 2: Number of connected subnets (n)
 Byte 3–[(2 * n)+2]: Held EA data (for n cases))

 iv

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
Supplement4 Instance List Description Format

Version: 2.11
ECHONET CONSORTIUM

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

Supplement 4 Instance List Description Format

Relevant instance code location bits are set to 1, and non-relevant bits to 0. The relevant class code (most
significant 2 bytes of EOJ) is stipulated as an array element number.

Self-node instance list page 1 (EPC=0xD0) is for disclosing data for instance numbers 0x00–0x7F.

Self-node instance list page 1 (EPC=0xD0) description format

 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Byte 2 00 01 02 03 04 05 06 07
Byte 3 08 09 0A 0B 0C 0D 0E 0F
Byte 4 10 11 12 13 14 15 16 17
Byte 5 18 19 1A 1B 1C 1D 1E 1F
Byte 6 20 21 22 23 24 25 26 27
Byte 7 28 29 2A 2B 2C 2D 2E 2F
Byte 8 30 31 32 33 34 35 36 37
Byte 9 38 39 3A 3B 3C 3D 3E 3F
Byte 10 40 41 42 43 44 45 46 47
Byte 11 48 49 4A 4B 4C 4D 4E 4F
Byte 12 50 51 52 53 54 55 56 57
Byte 13 58 59 5A 5B 5C 5D 5E 5F
Byte 14 60 61 62 63 64 65 66 67
Byte 15 68 39 3A 3B 3C 3D 3E 3F
Byte 16 70 71 72 73 74 75 76 77
Byte 17 78 79 7A 7B 7C 7D 7E 7F

Note: For each bit, 0 = no property; 1 = property exists.

 v

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
Appendix 4 Instance List Description Format

Version: 2.11
ECHONET CONSORTIUM

Supplement 5 Class List Description Format

The relevant class code location bits of EOJ Byte 2 are set to 1, and the non-relevant bits are set to 0.
When Range 1 is stipulated in the element, the format shown in (2) below is used.
The relevant class group code (most significant byte of EOJ) is stipulated as the most significant byte of the

array element number, and the aforementioned range is stipulated by the least significant byte (see following
diagram below).

Array Element

Range stipulation
 0x01: Range 1 stipulated
 0x02: Range 2 stipulated
Class group code stipulation

Byte 1 Byte 2

 vi

© 2000（2002） ECHONET CONSORTIUM ALL RIGHT RESERVED

ECHONET SPECIFICATION
II ECHONET Communication Middleware Specifications
Appendix 4 Instance List Description Format

Version: 2.11
ECHONET CONSORTIUM

(1) Format when range 1 is stipulated

Byte 1: Number of classes belonging to stipulated class group
 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Byte 2 00 01 02 03 04 05 06 07
Byte 3 08 09 0A 0B 0C 0D 0E 0F
Byte 4 10 11 12 13 14 15 16 17
Byte 5 18 19 1A 1B 1C 1D 1E 1F
Byte 6 20 21 22 23 24 25 26 27
Byte 7 28 29 2A 2B 2C 2D 2E 2F
Byte 8 30 31 32 33 34 35 36 37
Byte 9 38 39 3A 3B 3C 3D 3E 3F
Byte 10 40 41 42 43 44 45 46 47
Byte 11 48 49 4A 4B 4C 4D 4E 4F
Byte 12 50 51 52 53 54 55 56 57
Byte 13 58 59 5A 5B 5C 5D 5E 5F
Byte 14 60 61 62 63 64 65 66 67
Byte 15 68 39 3A 3B 3C 3D 3E 3F
Byte 16 70 71 72 73 74 75 76 77
Byte 17 78 79 7A 7B 7C 7D 7E 7F

Note: For each bit, 0 = no instance; 1 = instance exists.

Format when range 2 is stipulated

Byte 1: Number of classes belonging to stipulated class group
 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Byte 2 ８０ ８１ ８２ ８３ ８４ ８５ ８６ ８７
Byte 3 ８８ ８９ ８A ８B ８C ８D ８E ８F
Byte 4 ９０ ９１ ９２ ９３ ９４ ９５ ９６ ９７
Byte 5 ９８ ９９ ９A ９B ９C ９D ９E ９F
Byte 6 A０ A１ A２ A３ A４ A５ A６ A７
Byte 7 A８ A９ AA AB AC AD AE AF
Byte 8 B０ B１ B２ B３ B４ B５ B６ B７
Byte 9 B８ B９ BA BB BC BD BE BF
Byte 10 C０ C１ C２ C３ C４ C５ C６ C７
Byte 11 C８ C９ CA CB CC CD CE CF
Byte 12 D０ D１ D２ D３ D４ D５ D６ D７
Byte 13 D８ D９ DA DB DC DD DE DF
Byte 14 E０ E１ E２ E３ E４ E５ E６ E７
Byte 15 E８ E９ EA EB EC ED EE EF
Byte 16 F０ F１ F２ F３ F４ F５ F６ F７
Byte 17 F８ F９ FA FB FC FD FE FF

Note: For each bit, 0 = no instance; 1 = instance exists.

