

 i

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Part IV

ECHONET Basic API Specifications

 ii

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Revision History Note) Version numbers except Ver.3.20 indicate Japanese editions.

• Version 1.0 March 18th 2000 Released / Open to consortium members
 July 2000 Open to the public
• Version 1.01 May 23rd 2001 Open to consortium members
 Addendum & corrigendum of Version 1.0
• Version 2.00 August 7th 2001 Open to consortium members

Additions and changes mainly applied to the JAVA-API requirements.
Chapter 5 was released in the form of a separate file.

• Version 2.01 December 19th 2001 Open to consortium members
 Errors in Version 2.00 corrected
• Version 2.10 Preview December 28th 2001 Open to consortium members
• Version 2.10 Draft February 15th 2002 Open to consortium members
• Version 2.10 March 7th 2002 Open to consortium members

 The following Table-of-Contents entries were revised:

 Revised
entry Revision/addition

1 3.1 The reset request was integrated into the initialization request in
accordance with the revision of the state transition stipulated in Part 2.

2 3.2 The reset request was integrated into the initialization request in
accordance with the revision of the state transition stipulated in Part 2.

3 4.2 MidStart and MidInitAll were added in accordance with the revision of the
state transition stipulated in Part 2. The MidReset description was
corrected.

4 4.3 MidStart and MidInitAll were added in accordance with the revision of the
state transition stipulated in Part 2. The MidReset description was
corrected.

 •Version 2.11 April 26th 2002 Open to consortium members
 The following Table-of-Contents entries were revised:

 Revised
entry Revision/addition

1 2.1 - Communication stop request and complete stop request were
added to Table 2.1

2 2.2 - Explanation of communication stop request and complete stop request
was added.

3 3.1 - Communication stop request and complete stop request were
added to Table 3.1

4 3.2 - Explanation of communication stop request and complete stop request
was added

5 3.2 - Explanation of suspension request was revised.
6 4.2 - MidStop and MidHalt were added to Table 4.1.
7 4.3.47 - Explanation of MidStop API was added.

 iii

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

8 4.3.48 - Explanation of MidHalt API was added.

•Version 3.00 Draft June 12th 2002 Open to consortium members
 The following Table-of-Contents entries were revised:

 Revised
entry Revision/Addition

1 1.2 -Fig. 1.1 New Transmission Media was added,

2 3.1
-The lower-layer communication software address data table request,
master router notification request and hardware address data request were
added to Table 3.1.

3 3.2 -An explanation of the lower-layer communication software address data
table request was added.

4 3.2
-An explanation of the master router notification request was added.

5 3.2 -An explanation of the hardware address data request was added.

6 4.2 -MiGetAddressTableData, MidSetMasterRouterFlag and
MidGetHardwareAdddress were added to Table 4.1.

7 4.3.18 -An explanation of the argument was partially added.
7 4.3.47 -The item No. was changed.
8 4.3.48 -The item No. was changed.
9 4.3.49 -An explanation of MiGetAddressTableData was added.
10 4.3.50 -An explanation of MidSetMasterRouterFlag was added.
11 4.3.51 -An explanation of MidGetHardwareAdddress was added.

•Version 3.00 Draft August 29th 2002 Open to consortium members
 The following Table-of-Contents entries were revised:

 Revised
entry Revision/addition

1 5 -How the Java version of API is described was revised.

•Version 3.10 Draft November 8th 2002 Open to consortium members

 The following Table-of-Contents entries were revised:

 Revised
entry Revision/addition

1 4.3.45 -MidGetReceiverEPOMulti was revised.

•Version 3.10 Draft December 18th 2002 Open to consortium members
•Version 3.11 Draft March 7th 2003 Open to consortium members

 iv

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

•Version 3.12 Draft May 22nd 2003 Open to consortium members
 The following Table-of-Contents entries were revised:

 Revised
entry Revision/addition

1
3.1
Table3.1
3.2 (32)

-A description of lower-layer communication software address table data
size acquisition was added.

2 3.2 -Table numbers were given (Table 3.33 to 3.36).
3 4.2 -The names of functions (No.31 and No.45) in Table 4.1 were revised.

•Version 3.20 Draft October 17th 2003 Open to consortium members

 The following Table-of-Contents entries were revised:

 Revised
entry Revision/addition

1

4.38
4.39
4.3.12
4.3.13

-Revisions were made to enable array-based processing of MidSetEPC
functions.

2
4.3.10
4.3.11

-Revisions were made to enable array-based processing of MidGetEPC
functions.

3 Chapter 4
-The range of element numbers was changed from [0 0xFFFE] to [0
0xFFFF].
-The encryption system was changed from DES to AFS-CBC.

4 4.3.41 -The argument and explanation of MidRequestRun were revised.
5 4.3.53 -The function, MidGetReceiveCheckEpcMulti, was added.
6 4.3.54 -The function, MidGetDevID, was added.

•Version 3.20 December 12th 2006 Open to the public.

 The following Table-of-Contents entries were revised:

 Revised
entry Revision/Addition

1 3.1
- Decoded Message Data Readout Check, Lower-layer Communication
Software Installation Information Request and Last Send Error
Information Acquisition were added to Table 3.1.

2

4.3.8
4.3.9
4.3.10
4.3.12
4.3.13
4.3.17
4.3.24
4.3.25
4.3.44

- The value was revised to enable the setting of multiple Service Provider
Level access levels.

 v

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

3 4.2 - The function, MidGetLastSendError, was added to Table 4.1.

4
4.3.5
4.3.6
4.3.7

- Erroneously indicated (5) Return value was revised.

5 4.3.8
-The explanation of names was revised.
-ESV_INF_AREQ was added to esv_code.

6 4.3.10 - esv_code was changed from [in] to [out].

7 4.3.13
- The explanation of names was revised.
- The names of functions for security were revised.
- 0x6D and 0x6E were revised and 0x78 was added in esv_code.

8 4.3.27 - The structure was revised to EXT_EPC_M.

9 4.3.45
- esv_code was added to the syntax.
- esv_code was revised from [in] to [out] in the explanation.

10 4.3.54 - The data type of the function, MidGetDevID, was changed to long.
11 4.3.55 - MidGetLastSendError was added.
12 5.3.1.4 - The timeout was added to exclusions.
13 5.3.1.20 - The return code was revised to –1 when “this” is a broadcast address.

14 5.3.1.21
- Syntaxes, 5 to 8, were added.
- The timeout time was added to the argument.
- The timeout was added to exclusions.

• Version 3.30 December 2nd 2004 Open to consortium members.
 The following Table-of-Contents entries were revised:

 Revised
entry Revision/addition

1 1.2 -Explanations about IEEE802.11/11b were added in “Fig. 1.1. Positioning
of Basic API on the Communication Layer.”

2 4.3.39 -Explanations about IEEE802.11/11b were added to the explanations
about lower-layer communication software identification information.

3 4.3.50 -Explanations about IEEE802.11/11b were added to the explanations
about lower-layer communication software identification information.

4 4.3.51 -Explanations about IEEE802.11/11b were added to the explanations
about lower-layer communication software identification information.

5 4.3.52 -Explanations about IEEE802.11/11b were added to the explanations
about lower-layer communication software identification information.

6 4.3.54 -Explanations about IEEE802.11/11b were added to the explanations
about lower-layer communication software identification information.

7

4.3.8
4.3.9
4.3.10
4.3.11
4.3.12

-The return value EAPI_MEMBER_EPC was deleted.

8
4.3.26
4.3.27

-Explanations about the return value EAPI_NORESOURCE were
amended.

 vi

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

9

4.3.5
4.3.7
4.3.13
4.3.18
4.3.36

-Explanation about the syntax under “(3) Syntax” was amended.

10 4.3.21 -The return value was changed from EAPI_NOT_MOBJECT to
EAPI_NOTMEMBER_EPC.

11

4.3.8
4.3.9
4.3.10
4.3.12
4.3.13

-The makerKey type was changed to char*.

12 4.3.45
-The definition of the argument opc_code was changed.
-The function name was changed.

•Version 3.40 Draft December 28th 2004 Open to consortium members.
 The following Table-of-Contents entries were revised:

• Version 3.40 February 3rd 2005 Open to consortium members.
• Version 3.41 May 11th 2005 Open to consortium members.
• Version 3.2 October 13th 2005 Open to the public.
• Version 3.42 October 27th 2005 Open to consortium members.
 The following Table-of-Contents entries were revised:

• Version 3.50 Draft August 3rd 2006 Open to consortium members.
• Version 3.50 September 20th 2006 Open to consortium members.
• Version 3.51 Draft February 2nd 2007 Open to consortium members.

 Revised
entry

Revision/Addition

1 1.2 Explanations about the Power Line Communication Protocol C and D Systems
were added in “Fig. 1.1 Positioning of Basic API on the Communication Layer.”

The layout was changed.

2 4.3.49

4.5.50

4.3.51

4.3.52

4.3.54

“Power Line Communication Protocol System” in the explanation about device_id
was changed to “Power Line Communication Protocol A and D Systems.”

The value “0xA1” for the Power Line Communication Protocol C System was
added.

 Revised
entry

Revision/Addition

1 4.1 “EAPI_UNACCEPTABLE: 100 (Means of Acquisition Acceptance Unavailable)”
and “EAPI_MOMENTARY_ERROR: 110 (Temporary Error)” were added.

 vii

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

• Version 3.60 March 5th 2007 Open to consortium members.
 December 11th 2007 Open to the public.

The specifications published by the ECHONET Consortium are established without regard
to industrial property rights (e.g., patent and utility model rights). In no event will the
ECHONET Consortium be responsible for industrial property rights to the contents of its
specifications.

The publisher of this specification is not authorized to license and/or exempt any third
party from responsibility for JAVA, IrDA, Bluetooth or HBS.
A party who intends to use JAVA, IrDA, Bluetooth or HBS should take action in being
licensed for above-mentioned specifications.

In no event will the publisher of this specification be liable to you for any damages arising
out of use of this specification.

The original language of The ECHONET Specification is Japanese. The English version of
the Specification was translated the Japanese version. Queries in the English version
should be refereed to the Japanese version.

 viii

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Contents

Chapter 1 Overview..1-1
1.1 Basic Concept...1-1
1.2 Positioning on Communication Layers..1-2

Chapter 2 ECHONET Basic API Function Specifications ...2-1
2.1 List of ECHONET Basic API Functions ...2-1
2.2 ECHONET Basic API Function Specifications ..2-4

Chapter 3 Level 1 ECHONET Basic API Specifications ...3-1
3.1 List of Level 1 ECHONET Basic APIs ...3-1
3.2 Level 1 ECHONET Basic API Detailed Specifications.....................................3-4

Chapter 4 Level 2 ECHONET Basic API Specifications (For C Language)4-1
4.1 Constant Specifications...4-2
4.2 List of Low-level Basic API Functions ...4-7
4.3 Low-Level Basic API Function Detailed Specifications..................................4-10

4.3.1 MidOpenSession... 4-11
4.3.2 MidCloseSession...4-12
4.3.3 MidSetEA ..4-13
4.3.4 MidGetEA..4-14
4.3.5 MidGetNodeID ..4-15
4.3.6 MidSetControlVal...4-16
4.3.7 MidGetControlVal ..4-17
4.3.8 MidSetSendEpc, MidExtSetSendEpc..4-18
4.3.9 MidSetEpc, MidExtSetEpc ..4-21
4.3.10 MidGetReceiveEpc, MidExtGetReceiveEpc.......................................4-24
4.3.11 MidGetEpc ...4-27
4.3.12 MidSetSendCheckEpc, MidExtSetSendCheckEpc4-28
4.3.13 MidSetSendEpcM, MidExtSetSendEpcM...4-31
4.3.14 MidSetEpcM, MidExtSetEpcM ...4-35
4.3.15 MidGetReceiveEpcM ...4-38
4.3.16 MidGetFpcM...4-40
4.3.17 MidSetSendCheckEpcM, MidExtSetSendCheckEpcM4-41
4.3.18 MidGetReceiveCheckEpc, MidExtGetReceiveCheckEpc4-44

 ix

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.19 MidGetEpcSize ..4-47
4.3.20 MidGetEpcAttrib ...4-48
4.3.21 MidGetEpcMember ..4-50
4.3.22 MidCreateNode ..4-51
4.3.23 MidCreateObj ...4-52
4.3.24 MidCreateEpc, MidCreateExtEpc...4-53
4.3.25 MidCreateEpcM, MidCreateExtEpcM...4-56
4.3.26 MidAddEpcMember..4-59
4.3.27 MidAddEpcMemberS ...4-60
4.3.28 MidDeleteNode ..4-61
4.3.29 MidDeleteObj ...4-62
4.3.30 MidDeleteEpc...4-63
4.3.31 MidDeleteEpcM..4-64
4.3.32 MidGetState ...4-65
4.3.33 MidSetRecvTargetList ..4-66
4.3.34 MidAddRecvTargetList ...4-67
4.3.35 MidDeleteRecvTargetList ...4-68
4.3.36 MidGetRecvTargetList..4-69
4.3.37 MidStart ..4-70
4.3.38 MidReset ..4-71
4.3.39 Midlnit...4-72
4.3.40 MidlnitAll...4-73
4.3.41 MidRequestRun ...4-74
4.3.42 MidSuspend ...4-75
4.3.43 MidWakeUp..4-76
4.3.44 MidSetSendMulti, MidExtSetSendMulti ...4-77
4.3.45 MidGetReceiveEpcMulti ..4-80
4.3.46 MidSetSecureContVal ..4-82
4.3.47 MidStop ..4-83
4.3.48 MidHalt ...4-84
4.3.50 MidGetAddressTableData ..4-87
4.3.55 MidGetLastSendError ..4-96

Chapter 5 Level 2 ECHONET Basic API Specifications (For JavaTM Language)5-1
5.1 Basic Concept...5-1
5.2 API Configuration..5-3

5.2.1 API classes ...5-3

 x

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.2.2 Relationship between classes ...5-3
5.2.3 EN_Object class..5-4
5.2.4 EN_Node class ...5-6
5.2.5 EN_Property class...5-6
5.2.6 EN_Packet class ...5-7
5.2.7 EN_Exception exception class ..5-7
5.2.8 EN_EventListener interface...5-7
5.2.9 EN_Const interface ...5-7
5.2.10 EN_SecureOpt class ...5-7
5.2.11 EN_CpException exception class ..5-7

5.3 Detailed API Specifications ...5-8
5.3.1 EN_Object class..5-9
5.3.2 EN_Node class ..5-64
5.3.3 EN_Property class ...5-78
5.3.4 EN_Packet class ...5-83
5.3.5 EN_Exception exception class ..5-84
5.3.6 EN_EvenListener interface..5-85
5.3.7 EN_Const interface ...5-87
5.3.8 EN_SecureOpt class ...5-92
5.3.9 EN_CpException exception class ...5-93

 1-1

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
1 Overview

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Chapter 1 Overview
1.1 Basic Concept

To implement the ease of development and implantation of application software in
ECHONET, two APIs (Application Programming Interface) are specified: the Basic API (for
using the ECHONET Communication Middleware functions described in Part 2) and the
Service API (for using the Service Middleware described in Part 8). Part 4 describes the
specifications of the Basic API.
The Basic API is designed to use the ECHONET Communication Middleware functions.
Consideration is given to the interface so that the application software developer need not
consider communication procedures or processing. The operations for functions on other
nodes are designed to be attained by operating virtual ECHONET Objects existent in the
ECHONET Communication Middleware. The Basic API is available as an interface to be
accessed to the objects of other devices using the communications protocol defined in Part 2.
That is, using this API enables requests of an object service to an object of another device,
and the receiving of responses from it. Using this API also makes it possible to receive an
object service requested from another device, and transmit a response to it after processing on
the self side.
The Basic API specifications are such that the Basic API is available as a general-purpose
interface not oriented to any specific application software. This chapter specifies the
interface functions of the ECHONET API, specifies the input/output data items to be used as
the Basic API at functional implementation, and specifies functions for the case in which a
programming language has been specified. The detailed specifications for input/output data
items are provided as the “Level 1 ECHONET Basic API Specifications”. The detailed
specifications for functions are provided as the “Level 2 ECHONET Basic API
Specifications”.

 1-2

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
1 Overview

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

1.2 Positioning on Communication Layers
Figure 1.1 shows the positioning of the Basic API on the communication layers. The
ECHONET Communications Processing Block performs communication protocol
processing, information memorizing for communication protocol processing, and various
information management for self-device status or other device status so that the application
software may easily perform processing for remote control of equipment system devices and
monitoring of device status. The ECHONET Basic API is an interface that allows application
software to use this ECHONET Communications Processing Block.

Fig. 1.1 Positioning of Basic API on the Communication Layer

LonTalk is a registered trademark of the Echelon Corporation that is used in the United States
and other countries.
Bluetooth is a registered trademark of Bluetooth SIG, Inc.
Ethernet is a registered trademark of the Xerox Corporation.
All other trademarks are properties of their respective owners.

OSI reference
communications

layers

Layer 3 to
 Layer 7

Layer 1 and
Layer 2

Application Software

Service API

Base API Base API

Device Object Service Object

Common Lower-layer
Communication Interface

Individual Lower-layer
Communication Interfaces

ECHONET Communications Processing Section

Protocol Differences Absorption Processing Section

Lower-layer Communication Software

Transmission Media

Lower-layer Communication Software Supported by the Current Version

Service
Middleware

Communications
Middleware

Simbol Name of Lower-layer Communication Software Transmission Medium
Power Line Communication Protocol A System
Power Line Communication Protocol D
System
Low-power Radio

Extended HBS
IrDA Control
LonTalk®

Bluetooth® (UDP/IP)

Ethernet
IEEE802.3 (UDP/IP)

IEEE802.11
IEEE802.11b (UDP/IP)

Power Line Communication Protocol C System

Power distribution lines

Low-power radio

Twisted-pair cables
Infrared

Low-power radio

Low-power radio (BT)

Ethernet

Low-power radio (WLAN)

Power distribution lines

 2-1

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
2 ECHONET Basic API Function Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Chapter 2 ECHONET Basic API Function Specifications
2.1 List of ECHONET Basic API Functions

In the standard for ECHONET Communication Middleware (see detailed specifications in
Part 2), control and settings between ECHONET Nodes are implemented by operating the
ECHONET Objects. In addition, control and settings related to communications between the
application software and the ECHONET Communication Middleware are also implemented
by operating the ECHONET objects. Accordingly, it may be said that ECHONET Object
operations form the basis for ECHONET Communication Middleware operations. From the
viewpoint of application developers, ECHONET Object operation functions are classified
into the following eight types:

Self-node device object operating function (1)

Communication middleware operating function on the self-node to disclose the function or information as the
device of the self-node or to cause another node to control or set the function or information as the node of the
self-node.

Self-node profile object operating function (2)

Communication middleware operating function on the self-node to disclose the function or information as the node
of the self-node to another node.

Self-node communication definition object operating function (3)

Communication middleware operating function on the self-node to set the operations on the communication of each
property of the self-node device object or profile object or disclose such information to another node (permits
receiving a setting from another node depending on the setting).

Self-node service object operating function (4)

Communication middleware operating function on the self-node to disclose the self-node Service Middleware
function or information or cause another node to control or set the Service Middleware function or information of
the self-node. This function is based on Service Middleware operations.

Other node device object operating function (5)

Communication middleware operating function on the self-node to perform setting control for the function (device
object) as a device disclosed by another node or obtain status or information through ECHONET.

Other node profile object operating function (6)

Communication middleware operating function on the self-node to perform setting control for the Service
Middleware function (service object) disclosed by another node or to obtain status or information through
ECHONET.

Other node communication definition object operating function (7)

Communication middleware operating function on the self-node to perform setting control for operations on the
communication of each property of the device object or profile object in other node communication middleware and
to obtain status or information through ECHONET.

Other node service object operating function (8)

Communication middleware operating function on the self-node to browse the function or information of another
node Service Middleware or to perform control settings. This function is based on middleware operations.

 2-2

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
2 ECHONET Basic API Function Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

These ECHONET Objects to be manipulated have the same structure (multiple properties are
owned and services are specified for them) as indicated in Part 2. The individual operations
can be implemented in standardized form, and a rather simple operation specification can be
provided. However, in such an operation specification, the application software developer
must have full knowledge of the communication control operations of the ECHONET
Communication Middleware. Insufficient knowledge makes it difficult to operate the
ECHONET Communication Middleware. As a standard, the ECHONET Basic API
specification is intended to implement information control exchange between devices
connected to ECHONET network without the need for the application software developer to
consider communication operations. However, an excessively fractionalized API may make
use more difficult or increase the program size of the ECHONET Communication
Middleware in order to support the Basic API.

In light of this, the interface (API) functions shown in Table 2.1 are specified. The function
overview shown in Table 2.1 is described from the standpoint of the application software
developer (Basic API user). The detailed function specifications of each API are shown in
the next item from the same standpoint.

 2-3

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
2 ECHONET Basic API Function Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Table 2.1 List of ECHONET Basic API Functions

No. API name Outline of function Supplement

1 Request for initialization Requests initialize Communications Processing Block in ECHONET
Communication Middleware.

2 Request for operation start Requests start Communications Processing Block in ECHONET
Communication Middleware.

3 Fault notice Notifies ECHONET Communication Middleware of the fault (error)
status of application software.

4 Request for suspension Requests suspend operation for Communications Processing Block
in ECHONET Communication Middleware.

5 Request for operation
restart

Requests restart operation for Communications Processing Block in
ECHONET Communication Middleware.

6 Self-node profile object
operation

Sets and gets property values of the profile object of the self-node,
and notifies other nodes.

7 Other node profile object
operation

Gets property values of profile object of another node.

8 Self-node device object
operation

Sets and gets property values of self-node device object, obtains
requests for property value control from another node, and notifies
property values to another node.

9 Other node device object
operation

Sets property values of self-node device object and gets property
values.

10 Self-node communication
definition object operation

Sets and gets property values of self-node communication definition
object, requests property value control from another node, and
notifies property values to another node.

11 Other node
communication definition
object operation

Sets and gets property values of communication definition object of
another node.

12 Self-node service object
operation

Sets and gets property values of self-node service object, gets request
for control from another node, and notifies property values to another
node.

13 Other node service object
operation

Sets and gets property values of service object of another node.

14 Addition or deletion of
control object

Adds or deletes objects under control of ECHONET communication
block in units of property.

15 Request for
communication stop

Requests that communications processing blocks below ECHONET
Communication Middleware switch to communication stop status.

16 Request for complete stop Requests that communications processing blocks below ECHONET
Communication Middleware switch to stop status.

 2-4

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
2 ECHONET Basic API Function Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

2.2 ECHONET Basic API Function Specifications
This section describes the detailed function specifications for each Basic API shown in Table
2.1 in the previous section, from the standpoint of the Basic API user (application software
developer). Regarding the operations of the ECHONET Communications Processing Block,
the relation with the state transition is mainly described. For the status underlined in the
description, see Part 2, “8.2 ECHONET Communications Processing Block State
Transition”.

(1) Request for initialization
 Requests initialization related to communications under ECHONET Communication

Middleware to the ECHONET Communications Processing Block. Upon receiving this
request, the ECHONET Communications Processing Block initializes the ECHONET
Communications Processing Block, Protocol Difference Absorption Processing Block,
and Lower-layer Communication Software using the specified information. After
execution of initialization, the ECHONET Communications Processing Block is put into
a “start stop status”.

(2) Request for operation start
 Requests start of operation of software related to communications under ECHONET

Communication Middleware. Upon receiving this request in the start stop status, the
ECHONET Communications Processing Block is put into a “normal operation status”.
(The operation is started.)

(3) Fault notice
 Notifies ECHONET Communications Processing Block of fault status of the application

software. Upon receiving this notice, the ECHONET Communications Processing Block
holds the application software fault and remains in “normal operation status”. (Stop
operation is not necessary.)

(4) Request for suspension
 Requests suspension for software related to communications under ECHONET

Communication Middleware. Upon receiving this request, the ECHONET
Communications Processing Block waits in “suspension status” if the request relates to
the suspension of the ECHONET Communications Processing Block proper. When the
request relates to suspension of protocol difference absorption processing and discrete
lower-layer communication software, said block executes suspend processing only for
the software of the specified portion.

 2-5

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
2 ECHONET Basic API Function Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(5) Request for operation restart
 Requests to clear “suspension status” and restart operation for software related to

communications under ECHONET Communication Middleware. Upon receiving this
request, the ECHONET Communications Processing Block restarts the operation of the
specified software, including itself.

(6) Self-node profile object operation
 Sets the property values of the profile object of the self-node, obtains the set values of the

same object, and notifies another node of the property values. The ECHONET
Communications Processing Block accepts this API processing only in “normal
operation status”.

(7) Other node profile object operation
 Sets property values of profile object of another node and obtains set values for the

ECHONET Communications Processing Block. The ECHONET Communications
Processing Block accepts this API processing only in “normal operation status”.

(8) Self-node device object operation
 Sets property values of device object of self-node, obtains set values, requests the

property value operation from another node, and notifies another node of property values.
The ECHONET Communications Processing Block accepts this API processing only in
“normal operation status”.

(9) Other node device object operation

 Requests property value control of the device object of another node and obtains set
values for the ECHONET Communications Processing Block. The ECHONET
Communications Processing Block accepts this API processing only in “normal
operation status”.

(10) Self-node communication definition object operation
 Sets and obtains the property values of communication definition object of the self-node,

obtains requests for property value control from another node, and notifies another node
of property values for the ECHONET Communications Processing Block. The
operations (fixed time notice setting, destination specification at state change, etc.) on
property communications of the device object in the self-node owned by the ECHONET
Communications Processing Block are targets to be controlled. The ECHONET
Communications Processing Block accepts this API processing only in “normal
operation status”.

 2-6

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
2 ECHONET Basic API Function Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(11) Other node communication definition object operation
 Sets and obtains property values of communication definition object of another node and

obtains requests for property value control from another node for the ECHONET
Communications Processing Block. The operations (fixed time notice setting,
destination specification at state change, etc.) on the property communications of the
device objects owned by the ECHONET Communications Processing Block of another
node are targets to be controlled. The ECHONET communications processing accepts
this API processing only in normal operation status.

(12) Self-node service object operation
 Sets and obtains property values of service object of self-node, obtains requests for

property value control from another node, and notifies another node of information for
the ECHONET Communications Processing Block. This API operation is basically
performed by the Service Middleware that uses the intended service object. The
ECHONET Communications Processing Block accepts this API processing only in
“normal operation status”.

(13) Other node service object operation
 Sets and obtains property values of another node service objects and obtains requests for

property value control from another node for the ECHONET Communications
Processing Block. This API operation is basically performed by the Service Middleware
that uses the intended service object. The ECHONET Communications Processing
Block accepts this API processing only in “normal operation status”.

(14) Addition/deletion of control objects
 Adds or deletes various objects of self-node or other nodes under control in units of

property for the ECHONET Communications Processing Block. The ECHONET
communications processing accepts this API processing only in “normal operation
status”.

(15) Request for communication stop
Requests that communications processing blocks below ECHONET Communication
Middleware switch to communication stop status.

(16) Request for complete stop
Requests that communications processing blocks below ECHONET Communication
Middleware switch to stop status.

3-1

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Chapter 3 Level 1 ECHONET Basic API Specifications
3.1 List of Level 1 ECHONET Basic APIs

Table 3.1 shows a list of Level 1 ECHONET Basic APIs that the ECHONET Communication
Middleware supports. In the ECHONET Basic APIs of Level 1, the API items shown in Table
3.1 include some of those shown in Table 2.1, which are further classified. The mounted APIs
conforming to Level 1 should be provided with the input/output data items to be specified in
the next section. The details of each data item and multiple data items may be implemented as
a single data item, or a single data item may be further divided into multiple data items.
Argument names shall be indicated for reference. The function explanation and input/output
items of each API are specified in the next section. The following description is made from
the standpoint of the Basic API user (application software developer).

Table 3.1 List of Level 1 ECHONET Basic APIs (1/2)

No. API name Function outline Mounting
specification

1 Request for initialization Requests to initialize the Communications Processing Block under
ECHONET Communication Middleware.

Required

2 Request for operation start Requests to start the operation of the Communications Processing
Block under ECHONET Communication Middleware.

Required

3 Fault notice Notifies ECHONET Communication Middleware of the fault (error)
status of the application software.

Optional

4 Request for suspension Requests to suspend the operation for the Communications
Processing Block under ECHONET Communication Middleware.

Optional

5 Request for operation restart Requests to restart the operation for the Communications Processing
Block under ECHONET Communication Middleware.

Optional

6 Self-node profile object
property value setting and
notification

Performs information settings and notifies property values of the
profile object of the self-node.

Required

7 Self-node profile object
property value getting

Gets information set as property values of the profile objects of the
self-node.

Required

8 Other node profile object
property value getting

Gets information on property values of the profile object of another
node.

Optional

9 Self-node device object
property value setting and
notification

Sets or notifies the information on property values of the device
object of the self-node.

Required

10 Self-node device object
property value getting

Gets information set as property values of the device object of the
self-node.

Optional

11 Self-node device object
property value setting request
acquisition

Gets a request for setting or controlling the property values of the
device object of the self-node from another node.

Optional

12 Other node device object
property value getting

Gets information on property values of the device object of another
node.

Optional

3-2

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Table 3.1 List of Level 1 ECHONET Basic APIs (2/2)

No. API name Function outline Mounting
specification

13 Other node device object
property value notice acquisition

Gets the property values of the device object in another node that
were notified by another node.

Optional

14 Other node device object
property value setting request

Requests to set (a request for control) the information on property
values of the device object of another node.

Optional

15 Self-node communication
definition object property value
setting and notification

Sets or notifies information on property values of the
communication definition object of the self-node.

Optional

16 Self-node communication
definition object property value
getting

Gets information set as property values of the communication
definition object of the self-node.

Optional

17 Self-node communication
definition object property value
setting request acquisition

Gets a request for setting and controlling the property values of the
communication definition object of the self-node from another
node.

Optional

18 Other node communication
definition object property value
getting

Gets information on property values of the communication
definition object of another node.

Optional

19 Other node communication
definition object property value
notice acquisition

Gets the property values of the communication definition object in
another node that were notified by another node.

Optional

20 Other node communication
definition object property value
request

Requests to set (a request for control) information on property
values of the communication definition object of another node.

Optional

21 Self-node service object property
value setting and notification

Sets or notifies information on property values of the service object
of the self-node.

Optional

22 Self-node service object property
value getting

Gets information set as property values of the self-node service
object of the self-node.

Optional

23 Self-node service object property
value setting request acquisition

Gets a request for setting and controlling the property values of the
service object of the self-node from another node.

Optional

24 Other node service object
property value getting

Gets information of the property values of the service object of
another node.

Optional

25 Other node service object
property value notice acquisition

Gets the property values of the service object in another node that
were notified by another node.

Optional

26 Other node service object
property value request

Requests to set (a request for control) information on property
values of the service object of another node.

Optional

27 Addition of control object Adds an object under the control of the ECHONET
Communications Processing Block.

Optional

28 Deletion of control object Deletes an object under the control of the ECHONET
Communications Processing Block.

Optional

29 Control object acquisition Gets an object under the control of the ECHONET
Communications Processing Block.

Optional

30 Request for communication stop Requests that communications processing blocks below
ECHONET Communication Middleware switch to communication
stop status.

31 Request for complete stop Requests that communications processing blocks below
ECHONET Communication Middleware switch to stop status.

32 Lower-layer communication
software address table data size
acquisition

Acquires the number of lower-layer address table data sets
maintained by the lower-layer communication software.

Optional

33 Lower-layer communication Acquires the lower-layer address table data maintained by the Optional

3-3

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

software address table data
acquisition

lower-layer communication software. The output data includes the
number of data sets, a hardware address, a NodeID and an array
data set comprised of flags indicating that the node is the master
router.

34 Master router notification Requests communication middleware to notify lower-layer
communication software of whether or not its own node is the
master router.

Optional

35 Hardware address data
acquisition

Requests lower-layer communication software to provide the
hardware address data maintained. The output data includes the
hardware address.

Optional

36 Decoded message data readout
check

Checks decoded messages received. Optional

37 Lower-layer communication
software installation information
request

Makes a request for information on the number of lower-layer
communication software applications that can be operated and the
lower-layer communication software ID that indicates the software
type.

Optional

38 Last send error information
acquisition

Acquires the last ECHONET message send error information
maintained by the ECHONET Communication Middleware.

Optional

3-4

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

3.2 Level 1 ECHONET Basic API Detailed Specifications
Data input and output for each API shown in Table 3.1 in the previous section are shown
below. In the following table, “Input” indicates that data is transferred from the application
software to the ECHONET Communications Processing Block (input viewed from the
ECHONET Communications Processing Block), while “Output” indicates that data is
transferred from the ECHONET Communications Processing Block to the application
software (output viewed from the ECHONET Communications Processing Block).
Regarding mounting, the contents of this data should be provided as input/output, but the
transfer method (for example, using structures or transferring pointer information for transfer
buffer) is not specified for Level 1. Data names shall be provided for reference.

(1) Request for initialization (mandatory function to be mounted)
 Requests initialization (operation status setting) related to communications under

ECHONET Communication Middleware. Upon receiving this request, the ECHONET
Communications Processing Block (ECHONET Communication Middleware)
initializes the ECHONET Communications Processing Block, Protocol Difference
Absorption Processing Block, and lower-layer communication software according to the
specified information. However, the normal operation is started at the time “request for
operation start” was received. Table 3.2 shows the input/output specifications.

Table 3.2 List of Initialization Request API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input device_id Indicates a target to be initialized.
Identifying the ECHONET Communications Processing Block, Protocol
Difference Absorption Processing Block, individual lower-layer
communication software shall be enabled.

Optional

Input p_init Initialization parameter.
This data includes various kinds of timeout, EA specification method, etc.,
but concrete contents differ depending on the target to be initialized.

Required

Output Return Value TRUE: Success in initialization, FALSE: Failure in initialization Optional

(2) Request for operation start (mandatory function to be mounted)
 Requests an operation start of software related to communications under ECHONET

Communication Middleware. Table 3.3 shows the input/output specifications.

3-5

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Table 3.3 List of Operation Start Request API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input device_id Indicates a target for operation start.
Identification of the ECHONET Communications Processing Block,
Protocol Difference Absorption Processing Block, and individual
lower-layer communication software shall be enabled.

Optional

Output Return Value TRUE: Success in operation start, FALSE: Failure in operation start Optional

(3) Fault notice
 Notifies ECHONET Communications Processing Block of fault status of the application

software. The value obtained by the ECHONET Communications Processing Block with
this API is set in the contents of fault of the node profile. Table 3.4 shows the
input/output specifications.

Table 3.4 List of Fault Notice API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input Trouble_id Notice of trouble No. Required

Output Return Value TRUE: Fault notice acceptable, FALSE: Fault notice not acceptable Optional

(4) Request for suspension
 Requests suspension of software related to communications under ECHONET

Communication Middleware. Upon receiving this request, the ECHONET
Communications Processing Block accepts it if the request relates to the suspension of
the ECHONET Communications Processing Block proper. When the request does not
relate to “Request for operation restart”, “Request for initialization” and “Request for
complete stop”, the ECHONET Communications Processing Block shall not accept it
from the application software or the Protocol Difference Absorption Processing Block
(and lower-layer communication software). When the request relates to the suspension
of the Protocol Difference Absorption Processing Block and the discrete lower-layer
communication software, the ECHONET Communications Processing Block executes
only suspend processing for the software of the specified portion. Table 3.5 shows the
input/output specifications.

Table 3.5 List of Suspension Request API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input device_id Indicates a target for suspension.
Identifying the ECHONET Communications Processing Block, Protocol
Difference Absorption Processing Block, and individual lower-layer
communication software shall be enabled.

Optional

3-6

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Output Return Value TRUE: Suspension acceptable, FALSE: Suspension not acceptable Optional

(5) Request for operation restart
 Requests to clear suspension status and restart operation of software related to

communications under ECHONET Communication Middleware. Upon receiving this
request, the ECHONET Communications Processing Block restarts operation of the
specified software, including the self-block. Table 3.6 shows the input/output
specifications.

Table 3.6 List of Operation Restart Request API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input device_id Indicates a target for operation restart.
Identifying the ECHONET Communications Processing Block, Protocol
Difference Absorption Processing Block, and individual lower-layer
communication software shall be enabled.

Optional

Output Return Value TRUE: Success in restart, FALSE: Restart disabled (including failure) Optional

3-7

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(6) Self-node profile object property value setting and notification (mandatory function to
be mounted)

 Sets property values of node profile class, router profile class, and individual lower-layer
communication software profile class of the self-node and notifies nodes on ECHONET
(arbitrary function) of the set values for the ECHONET Communications Processing
Block. The profile information is property information in the profile object (see Part 2).
Setting is an operation performed to set a property value (write a value) of the profile
object on the ECHONET Communications Processing Block. Notification is an
operation performed to notify a property value of the profile object as data on
ECHONET. Figure 3.1 shows the relationship between this API and the ECHONET
Communications Processing Block, and Table 3.7 shows the input/output specifications.

Basic API

Self-node profile object
property

Application software

Basic API

Self-node profile object
property

Application software

ECHONET communication
processing block

ECHONET communication
processing block

Request for
setting

Request for setting
and notification

Notification
onto

ECHONET

Fig. 3.1

Table 3.7 List of Self-Node Profile Object Property Value Setting and

Notification API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input objclass_id Specifies a target profile class instance for setting or notifying profile
information. Instances of the respective profile objects of nodes, routers,
and individual lower-layer communication software are targets.

Required

Input prop_id Specifies a target property. Required

Input announce_info Specifies whether or not to notify ECHONET of setting information.
When notification is selected, destination information is included.

Optional

Input prop_info Setting in the properties specified in objclass_id and prop_id, or setting
changed values.

Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-8

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(7) Self-node profile object property value acquisition (mandatory function to be mounted)
 Reads (gets) property values of the node profile object instance, router file object

instance, and individual lower-layer communication software profile object instance of
the self-node.

 Figure 3.2 shows the relationship between this API and the ECHONET Communications
Processing Block, and Table 3.8 shows the input/output specifications.

Basic API

Self-node profile object
property

Application software

ECHONET communication
processing block

Request for
acquisition

Requested
property value

Fig. 3.2

Table 3.8 List of Self-Node Profile Object Property Value Getting

API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input objclass_id Specifies the target profile information to be obtained
The instances of all profile object classes (node, router, ECHONET
Communications Processing Block, Protocol Difference Absorption
Processing Block, and individual lower-layer communication software
profile class) are targets.

Required

Input prop_id Specifies a target property. Required

Output profile_info or
prop_info

Property value specified in objclass_id or prop_id. Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-9

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(8) Other node profile object property value getting
 Reads (gets) property values of the node profile class, router profile class, and individual

lower-layer communication software profile class of another node for the ECHONET
Communications Processing Block. This is classified into two cases: the first in which
getting of the values monitor-controlled on the communication middleware is requested
(CASE 1 in the following figure), and the second in which getting of the current value is
requested through ECHONET (CASE 2 in the following figure). In the latter case
(CASE 2), synchronization between the request for a value and the receipt of an actually
acquired value is not specified. However, non-synchronization is desirable for software
running on machines (CPUs) incapable of parallel processing. Profile information
consists of information of the profile object property, such as initial setting information
on the self-node EA and lower-layer communication software (see Part 2). Figure 3.3
shows the relationship between this API and the ECHONET Communications
Processing Block, and Table 3.9 shows the input/output specifications.

Basic API

Another node profile
object (monitor) property

value

Application software

ECHONET communication
processing block

Basic API

Another node profile
object (monitor) property

value

Application software

ECHONET communication
processing block

Request for
acquisition

Request for
acquisition

CASE1 CASE2

Requested
property value

Requested
property value

ECHONET
another

node
Fig. 3.3

Table 3.10 List of Other Node Profile Object Property Value Getting

API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a target node for profile information getting Required

Input objclass_id Specifies a target for profile information getting
All profile classes are targets.

Required

Input prop_id Specifies a target property. Required

Output prop_info Property value specified in objclass_id or prop_id. Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-10

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(9) Self-node device object property value setting and notification (mandatory function to
be mounted)

 Sets property value of each device object instance of the self-node and notifies nodes on
ECHONET of the set value (arbitrary function). The target property items, contents, etc.
for setting and notification differ with the individual device object instance (see Part 2).
Figure 3.4 shows the relationship between this API and the ECHONET Communications
Processing Block. Table 3.10 shows the input/output specifications.

Basic API

Self-node profile object
property

Application software

Basic API

Self-node profile object
property

Application software

ECHONET communication
processing block

ECHONET communication
processing block

Request for
setting

Request for setting
and notification

Notification
onto

ECHONET

Fig. 3.4

Table 3.10 List of Self-Node Device Object Property Value Setting and

Notification API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input objclass_id Specifies a device object instance of the target property value for setting
and notification.

Required

Input prop_id Specifies a target property. Required

Input announce_info Specifies whether or not a set value is notified to ECHONET. When
notification is selected, destination information is included.

Optional

Input prop_info Property value to be set and notified Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-11

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(10) Self-node device object property value getting
 Reads (gets) property value of each device object instance of the self-node for the

ECHONET Communications Processing Block. The target property items, contents, etc.
to be read differ with the individual device object instance (see Part 2). Figure 3.5 shows
the relationship between this API and the ECHONET Communications Processing
Block. Table 3.11 shows the input/output specifications.

Basic API

Self-node profile object
property

Application software

ECHONET communication
processing block

Request for
acquisition

Requested
property value

Fig. 3.5

Table 3.11 List of Self-Node Device Object Property Value Getting

API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input objclass_id Specifies a target device object for property value getting Required

Input prop_id Specifies a target property for getting Required

Output prop_info Information on value set in the specified property Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-12

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(11) Self-node device object property value setting request acquisition (mandatory function
to be mounted)

 Obtains request to set (except read) the property value of each device object instance of
the self-node from another node for the ECHONET Communications Processing Block.
The target property items, contents, etc. to be accepted from the other node differ with
the individual device object instance (see Part 2). A request to set a property value from
another node can be obtained by the application software at the time requested by the
application software but it may be a type (event) that is automatically notified. The value
that is requested to be written in a property value from another node shall be set in the
communication middleware in synchronization with an entity change of this property by
the application software, and the value previous to receipt of the request shall be held
until it is separately set. (The communication middleware does not change property
values without a request from the application software.) Figure 3.6 shows the
relationship between this API and the ECHONET Communications Processing Block,
and Table 3.12 shows the input/output specifications.

Basic API

Self-node device object
property

Application software

ECHONET communication
processing block

Request for
control from

another node

Fig. 3.6

Table 3.12 List of Self-Node Device Object Property Value

Setting Request Acquisition API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input objclass_id Specifies a target object instance to be checked to see if a request to set a
property value of a device object has been made from another node

Optional

Input prop_id Specifies a property to check the contents of a request for setting from
another node.

Optional

Output demobj_info Target device object information for control request (including property
information). Device object (including property) specification information,
control service information, and concrete setting control value information
are included.

Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-13

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(12) Other node device object property value getting
 Reads (gets) property value of each device object instance of another node for the

ECHONET Communications Processing Block. This is classified into two cases: the
first in which getting of the values monitor-controlled on the communication
middleware is requested (CASE 1 in the following figure), and the second in which
getting of the current value is requested through ECHONET (CASE 2 in the following
figure). In the latter case (CASE 2), synchronization between the request for a value and
the receipt of an actually acquired value is not specified. The target property items,
contents, etc. to be read differ with the individual device object instance (see Part 2).
Figure 3.7 shows the relationship between this API and the ECHONET Communications
Processing Block, and Table 3.13 shows the input/output specifications.

Basic API

Property of the device
object (monitor) of another

node

Application software

ECHONET communication
processing block

Basic API

Property of the device
object (monitor) of another

node

Application software

ECHONET communication
processing block

Request for
acquisition

Request for
acquisition

CASE1 CASE2

Requested
property value

Requested
property value

ECHONET
another

node
Fig. 3.7

Table 3.13 List of Other Node Device Object Information

Getting API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a target node for device object property value getting. Required

Input objclass_id Specifies a target class instance for device object property value getting. Required

Input prop_id Specifies a target property for property value getting. Required

Input place_info Specifies the information of the target location for information getting
(either information held on the current self-node or information on another
node).

Optional

Output prop_info Information on the value set in the specified property. Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-14

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(13) Other node device object property value notice acquisition
 Reads (gets) the property value of each device object instance notified by another node

for the ECHONET Communications Processing Block. Synchronization between read
time and notify time from another node shall not be specified (non-synchronization shall
be allowed). The property value of the device object instance of another node shall be
made obtainable by the application software at the time of request for acquisition but
may be a type (event) that is automatically notified. Figure 3.8 shows the relationship
between this API and the ECHONET Communications Processing Block, and Table
3.14 shows the input/output specifications.

Basic API

Another node device
object (monitor) property

value

Application software

ECHONET communication
processing block

Notice from
another node

Fig. 3.8

Table 3.14 List of Other Node Device Object Property

Value Notice Acquisition API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a node to check if the property value setting of a device object
was notified from another node.

Optional

Input objclass_id Specifies an object instance to check if the property value setting of a
device object was notified from another node.

Optional

Input prop_id Specifies a property to check if the property value setting of a device object
was notified from another node.

Optional

Output obj_info Notifies device object information (including property information).
Device object (including property) specification information, control
service information, and concrete setting control value information are
included.

Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-15

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(14) Other node device object property value setting request
 Requests to set property value of each device object instance of another node for the

ECHONET Communications Processing Block. Other node device object property
value setting requests are classified into two cases: the first in which the response of a
setting request result is not required (CASE 1 in the following figure), and the second in
which the response of a setting request result is required (CASE 2 in the following
figure). Synchronization between the request for setting and the acquisition of the actual
setting result is not specified. The target property items, contents, etc. for setting or
control differ with the individual device object instance (see Part 2). Figure 3.9 shows
the relationship between this API and the ECHONET Communications Processing
Block, and Table 3.15 shows the input/output specifications.

Basic API

Property of the device
object of another node

Application software

ECHONET communication
processing block

Basic API

Property of the device
object of another node

Application software

ECHONET communication
processing block

CASE1 CASE2

Setting
request result

ECHONET
another

node

Acceptance
response of
ESV level

Property
value of setting

request

Property
value of setting

request

Fig. 3.9

Table 3.15 List of Other Node Object Property Value Setting

Request API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a node of the target device object for setting. Required

Input objclass_id Specifies an object instance of the target device object for setting. Required

Input prop_id Specifies a target property for setting. Required

Input prop_info Information on the value to be set in the specified property. Service
specification is included.

Required

Output res_info Information on setting result Optional

Output Return Value TRUE: Normal, FALSE: Error Optional

3-16

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(15) Self-node communication definition object property value setting and notification
 Sets property value of each device object communication definition object instance of

self-node for the ECHONET Communications Processing Block, and notifies nodes on
ECHONET of the set value (arbitrary function). The target property items, contents, etc.
for setting and notification differ depending on the communication definition object
class (see Part 2). Figure 3.10 shows the relationship between this API and the
ECHONET Communications Processing Block, and Table 3.16 shows the input/output
specifications.

Basic API

Self-node communication
definition object property

Application software

ECHONET communication
processing block

Basic API

Self-node communication
definition object property

Application software

ECHONET communication
processing block

Request for
setting

Request for
setting and
notification

Notification
onto

ECHONET

Fig. 3.10

Table 3.16 Self-Node Communication Definition Object Property

Value Setting and Notification API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input objclass_id Specifies an object instance of the target communication definition object. Required

Input prop_id Specifies a target property for setting and notification. Required

Input announce_info Specifies whether or not set information is notified to ECHONET. When
notification is selected, destination information is included.

Optional

Input prop_info Property value of the communication definition object. Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-17

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(16) Self-node communication definition object property value getting
 Reads (gets) property value of each communication definition object instance of

self-node for the ECHONET Communications Processing Block. The target property
items, contents, etc. for reading differ depending on the communication definition object
instance (see Part 2). Figure 3.11 shows the relationship between this API and the
ECHONET Communications Processing Block, and Table 3.17 shows the input/output
specifications.

Basic API

Self-node communication
definition object property

Application software

ECHONET communication
processing block

Request for
acquisition

Requested
property value

Fig. 3.11

Table 3.17 List of Self-Node Communication Definition Object

Property Value Getting API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input objclass_id Specifies an instance of the target object for communication definition
object property getting.

Required

Input prop_id Specifies a target property for property value getting. Required

Output comprop_info Information set in the specified property. Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-18

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(17) Self-node communication definition object property value setting request acquisition
 Gets a request for setting a property value of the communication definition object class

of each device object from another node for the ECHONET Communications Processing
Block. (A request for setting a property value from another node shall be processed in the
communication middleware but not specially put up to the application software.) The
property items, contents, etc. that accept the setting from the other node differ depending
on the communication definition object instance (see Part 2). A request for setting a
property value from another node can be acquired by the application software as a call to
the communication middleware from the application software but may be a type (event)
that is automatically notified. Regarding the value requested to be set in the property
from another node, the value previous to the request shall be held until the entity of this
property is changed by the application software and this effect is separately set. (The
communication middleware will not change a property value without a request from the
application software.) Figure 3.12 shows the relationship between this API and the
ECHONET Communications Processing Block, and Table 3.18 shows the input/output
specifications.

Basic API

Property value of the
communication definition

object of the self-node

Application software

ECHONET communication
processing block

Request for
control from

another node

Fig. 3.12

Table 3.18 List of Self-Node Communication Definition Object Property

Value Setting Request Acquisition API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input objclass_id Specifies a target object instance to check if a request for setting a property
value of the communication definition object was made from another node.

Optional

Input prop_id Specifies a property to check the contents of a request for setting a property
value of the communication definition object from another node.

Optional

Output prop_info Information on the target communication definition object of a request for
control. Communication definition object (including property)
specification information, control service information, and concrete setting
control value information are included.

Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-19

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(18) Other node communication definition object property value getting
 Reads (gets) property value of each communication definition object instance of another

node for the ECHONET Communications Processing Block. This getting is classified
into two cases: the first in which a request to acquire the value monitored and controlled
on the communication middleware is made (CASE 1 in the following figure), and the
second in which a request to acquire the current value is made (CASE 2 in the following
figure). In the latter case (CASE 2), synchronization between the request for a value and
the receipt of an actually acquired value is not specified. The target property items,
contents, etc. for reading differ depending on the communication definition object
instance (see Part 2). Figure 3.13 shows the relationship between this API and the
ECHONET Communications Processing Block, and Table 3.19 shows the input/output
specifications.

Basic API

Property of the
communication definition
object of another node

Application software

ECHONET communication
processing block

Basic API

Property of the
communication definition

object (monitor) of another
node

Application software

ECHONET communication
processing block

Request for
acquisition Request for

acquisition

CASE1 CASE2

Requested
property value

Requested
property value

ECHONET
another

node
Fig. 3.13

Table 3.19 List of Other Node Communication Definition Object

Property Value Getting API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a node in which the target communication definition object
instance for property value getting exists.

Required

Input objclass_id Specifies a target object instance for property value getting. Required

Input prop_id Specifies a target property for property value getting. Required

Input place_info Specifies the information of the target location for information getting
(either information held on the current self-node or information on another
node).

Optional

Output prop_info Information on the value set in the specified property. Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-20

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(19) Other node communication definition object property value notice acquisition
 Reads (gets) property value of each communication definition object instance notified

by another node for the ECHONET Communications Processing Block.
Synchronization between read time and notice time from the other node shall not be
specified (non-synchronization is allowed). Figure 3.14 shows the relationship between
this API and the ECHONET Communications Processing Block, and Table 3.20 shows
the input/output specifications.

Basic API

Property of the
communication definition

object (monitor) of another
node

Application software

ECHONET communication
processing block

Notice from
another node

Fig. 3.14

Table 3.20 List of Other Node Communication Definition Object

Property Value Getting API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a node to check if a property value setting notice of the
communication definition object was given by another node.

Optional

Input objclass_id Specifies an object instance to check if a property value setting notice of
the communication definition object was given by another node.

Optional

Input prop_id Specifies a property to check if a property value setting notice of the
communication definition object was given by another node.

Optional

Output prop_info Information on the property value of the notified communication definition
object. Communication definition object (including property) specification
information, control service information, and concrete setting control value
information are included.

Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-21

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(20) Other node communication definition object property value setting request
 Requests to set the property value of each communication definition object instance of

another node for the ECHONET Communications Processing Block. Other node
communication definition object instance property value setting requests are classified
into two cases: the first in which the response of a setting request result is not required
(CASE 1 in the following figure), and the second in which the response of a setting
request result is required (CASE 2 in the following figure). Synchronization between the
request for setting and the acquisition of an actual setting result is not specified. However,
for software running on machines (CPUs) incapable of parallel processing,
non-synchronization is desirable. The target property items, contents, etc. for setting or
control differ with the individual device object instance (see Part 2). Figure 3.15 shows
the relationship between this API and the ECHONET Communications Processing
Block, and Table 3.21 shows the input/output specifications.

Basic API

Property of the
communication definition
object of another node

Application software

ECHONET communication
processing block

Basic API

Property of the
communication definition
object of another node

Application software

ECHONET communication
processing block

CASE1 CASE2

Setting
request result

ECHONET
another

node

Property
value of setting

request

Property
value of setting

request

Fig. 3.15

Table 3.21 List of Other Node Communication Definition Object Property

Value Setting Request API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a node of the target communication definition object instance for
setting.

Required

Input objclass_id Specifies a target communication definition object instance for setting. Required

Input prop_id Specifies a target property for setting. Required

Input prop_info Information on the value to be set in the specified property. Service
specification is included.

Required

Output res_info Information on setting result Optional

Output Return Value TRUE: Normal, FALSE: Error Optional

3-22

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(21) Self-node service object property value setting and notification
 Sets property value of each service object instance of self-node for the ECHONET

Communications Processing Block and notifies nodes on ECHONET of the set value
(arbitrary function). The target property items, contents, etc. for setting and notification
differ depending on the communication definition object instance (see Parts 2, 8, and 9).
Figure 3.16 shows the relationship between this API and the ECHONET
Communications Processing Block, and Table 3.22 shows the input/output
specifications.

Basic API

Service object property of
the self-node

Application software

ECHONET communication
processing block

Basic API

Service object property of
the self-node

Application software

ECHONET communication
processing block

Request for
setting

Request for
setting

Notification
onto

ECHONET

Fig. 3.16

Table 3.22 List of Self-Node Service Object Property Value Setting

and Notification API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input objclass_id Specifies a service object instance for property value setting or
notification.

Required

Input prop_id Specifies a target property for setting and notification. Required

Input announce_info Specifies whether or not set information is notified to ECHONET. When
notification is selected, destination information is included.

Optional

Input prop_info Information on property value setting and notification. Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-23

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(22) Self-node service object property value getting
 Reads (gets) property value of each service object instance of self-node for the

ECHONET Communications Processing Block. The target property items, contents, etc.
for reading differ for each service object instance (see Parts 2, 8, and 9). Figure 3.17
shows the relationship between this API and the ECHONET Communications
Processing Block, and Table 3.23 shows the input/output specifications.

Basic API

Service object property of
the self-node

Application software

ECHONET communication
processing block

Request for
acquisition

Requested
property value

Fig. 3.17

Table 3.23 List of Self-Node Service Object Property Value

Getting API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input objclass_id Specifies a service object instance of the target property value for getting. Required

Input prop_id Specifies a target property for setting and notification. Required

Output prop_info Information set in the specified property. Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-24

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(23) Self-node service object property value setting request acquisition
 Obtains request for setting property value of each service object instance of the self-node

from another node for the ECHONET Communications Processing Block. (Requests for
reading a property value from another node shall be processed in the communication
middleware but not made the responsibility of the application software.) The property
items, contents, etc. that accept settings from another node differ for each service object
instance (see Parts 2, 8, and 9). A request for setting a property value from another node
can be acquired by the application software as a call to the communication middleware
from the application software but may be a type (event) that is automatically notified.
Regarding the value that was requested to be set in the property from another node, the
value previous to the request shall be held until the entity of this property is changed by
the application software and this effect is separately set. (The communication
middleware will not change a property value without a request from the application
software.) Figure 3.18 shows the relationship between this API and the ECHONET
Communications Processing Block, and Table 3.24 shows the input/output
specifications.

Basic API

Service object property of
the self-node

Application software

ECHONET communication
processing block

Request for
setting from

another node

Fig. 3.18

Table 3.24 List of Self-Node Service Object Property Value Setting

Request Acquisition API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input objclass_id Specifies a target service object to check the contents of a request for
setting the property value of the communication definition object, made
from another node.

Optional

Input prop_id Specifies a property to check the contents of a request for setting the
property value made from another node.

Optional

Output prop_info Property value of the target service object of a request for setting. Service
object (including property) specification information, control service
information, and concrete setting control value information are included.

Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-25

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(24) Other node service object property value getting [MidGetOutAplData]
 Reads (gets) property value of each service object instance of another node for the

ECHONET Communications Processing Block. This getting is classified into two cases:
the first in which a request to acquire the value monitored and controlled on the
communication middleware is made (CASE 1 in the following figure), and the second in
which a request to acquire the current value is made (CASE 2 in the following figure). In
the latter case (CASE 2), synchronization between the request for a value and the receipt
of an actually acquired value is not specified. The target property items, contents, etc. for
reading differ for each service object instance (see Parts 2, 8, and 9). Figure 3.19 shows
the relationship between this API and the ECHONET Communications Processing
Block, and Table 3.25 shows the input/output specifications.

Basic API

Property value of the
service object of another

node

Application software

ECHONET communication
processing block

Basic API

Property value of the
service object (monitor) of

another node

Application software

ECHONET communication
processing block

Request for
acquisition Request for

acquisition

CASE1 CASE2

Requested
property value

Requested
property value

ECHONET
another

node
Fig. 3.19

Table 3.25 List of Other Node Service Object Property Value

Getting API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a target node for service object property value getting. Required

Input objclass_id Specifies a target object for service object property value getting. Required

Input prop_id Specifies a target property for property value getting. Required

Input place_info Specifies the information of the target location for information getting
(either information held on the current self-node or information on another
node).

Optional

Output prop_info Information on the value set in the specified property. Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-26

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(25) Other node service object property value notice acquisition
 Reads (gets) property value of each service object instance notified by another node for

the ECHONET Communications Processing Block. Synchronization between read time
and notice time from another node shall not be specified (non-synchronization is
allowed). Figure 3.20 shows the relationship between this API and the ECHONET
Communications Processing Block, and Table 3.26 shows the input/output
specifications.

Basic API

Property of the service
object (monitor) of another

node

Application software

ECHONET communication
processing block

Notice from
another node

Fig. 3.20

Table 3.26 List of Other Node Service Object Property Value

Getting API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a node to check if a property value setting notice of the service
object was given by another node.

Optional

Input objclass_id Specifies an object instance to check if a property value setting notice of
the service object was given by another node.

Optional

Input prop_id Specifies a property to check if a property value setting notice of the
service object was given by another node.

Optional

Output prop_info Property value of the notified service object. Communication definition
object (including property) specification information, control service
information, and concrete setting control value information are included.

Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-27

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(26) Other node service object instance property value setting request
 Requests to set the property value of each service object instance of another node for the

ECHONET Communications Processing Block. Other node service object instance
property value setting requests are classified into two cases: the first in which the
response of a setting request result is not required (CASE 1 in the following figure), and
the second in which the response of a setting request result is required (CASE 2 in the
following figure). Synchronization between the request for a setting and the acquisition
of an actually set result is not specified. The target property items, contents, etc. for
setting or control differ with the individual device object instance (see Parts 2, 8, and 9).
Figure 3.21 shows the relationship between this API and the ECHONET
Communications Processing Block, and Table 3.27 shows the input/output
specifications.

Basic API

Property of the service
object of another node

Application software

ECHONET communication
processing block

Basic API

Property of the service
object of another node

Application software

ECHONET communication
processing block

CASE1 CASE2

Setting
request result

ECHONET
another

node

Property
value of setting

request

Property
value of setting

request

Fig. 3.21

Table 3.27 List of Other Node Service Object Property Value

Setting Request API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a node of the target service object instance for setting. Required

Input objclass_id Specifies a target service object instance for setting. Required

Input prop_id Specifies a target property for setting. Required

Input prop_info Information on the value to be set in the specified property. Service
specification is included.

Required

Output res_info Information on setting result Optional

Output Return Value TRUE: Normal, FALSE: Error Optional

3-28

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(27) Addition of control object
 Adds various object instances of the self-node and another node under control in units of

property for the ECHONET Communications Processing Block. Table 3.28 shows the
input/output specifications.

Table 3.28 List of Control Object Addition API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a node in which the target object instance for addition exists. Required

Input objclass_id Specifies an object instance of the target control object for addition. Required

Input prop_id Specifies a target control property for addition. Required

Input prop_info Specifies a target control property value for addition. Optional

Output Return Value TRUE: Normal, FALSE: error Optional

(28) Deletion of control object
 Deletes various object instances of the self-node and another node under control for the

ECHONET Communications Processing Block in units of property. Table 3.29 shows
the input/output specifications.

Table 3.29 List of Control Object Deletion API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a node in which the target control object instance for deletion
exists.

Required

Input objclass_id Specifies an object instance of the target control object for deletion. Required

Input prop_id Specifies a target control property for deletion. Required

Output Return Value TRUE: Normal, FALSE: error Optional

(29) Control object acquisition
 Gets various object instances of the self-node and another node under control in units of

property for the ECHONET Communications Processing Block. Table 3.30 shows the
input/output specifications.

Table 3.30 List of Control Object Acquisition API Input/Output Data

Direction Data name Contents and condition Mounting
specification

Input enode_id Specifies a node in which the target control object for acquisition exists. Required

Output objclass_id Instance of the target control object for acquisition. Required

Output prop_id Specifies a target control property for acquisition. Required

Output Return Value TRUE: Normal, FALSE: error Optional

3-29

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(30) Request for communication stop
Requests that communications processing blocks below ECHONET Communication
Middleware switch to communication stop status.
Table 3.31 shows the input/output specifications.

Table 3.31 API Input/Output Data for Requests for Stopping Communication

Direction Data name Contents and condition Implementatio
n Specification

Input device_id Specifies component for which communication is to be stopped.

It must be possible to distinguish between the ECHONET
Communications Processing Block, Protocol Difference Absorption
Processing Block, and the individual lower-layer communication software.

Optional

Output Return

Value

TRUE: communication stop request received,

FALSE: communication stop request cannot be received

Optional

(31) Request for complete stop

Requests that communications processing blocks below ECHONET Communication
Middleware switch to stop status.
Table 3.32 shows the input/output specifications.

Table 3.32 API Input/Output Data for Requests for Complete Stop

Direction Data name Contents and condition Implementatio
n Specification

Input device_id Specifies component for complete stop.

It must be possible to distinguish between the ECHONET
Communications Processing Block, Protocol Difference Absorption
Processing Block, and the individual lower-layer communication software.

Optional

Output Return

Value

TRUE: complete stop request received,

FALSE: communication stop request cannot be received

Optional

3-30

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(32) Lower-layer communication software address table data size acquisition (Optional)
Acquires the number of lower-layer address table data sets maintained by the

lower-layer communication software. Table 3.33 shows the input/output
specifications.

Table 3.33 API Input/Output Data for Lower-Layer Communication Software Address Table Data

Size Acquisition

Direction Data name Contents and condition Remarks

Input device_id Specifies the lower-layer communication software ID acquired from the
lower-layer communication software type specific request service.

Optional

Output data_number Indicates the number of address table data sets maintained by the
lower-layer address table data.

Required

Output Return Value TRUE: Normal, FALSE: Error Optional

(33) Lower-layer communication software address table data acquisition (Optional)
Acquires the lower-layer address table data maintained by the lower-layer

communication software. The output data includes the number of data sets, the

hardware address of each data set, a NodeID and a list data comprised of flags

indicating that the node is the master router.

Table 3.34 API Input/Output Data for Lower-Layer Communication Software Address Table Data

Acquisition

Direction Data name Contents and condition Remarks

Input device_id Specifies the lower-layer communication software ID acquired from the
lower-layer communication software type specific request service.

Optional

Output data_number Indicates the number of address table data sets maintained by the
lower-layer address table data.

Required

Output ListOfHardwaread
dress

Indicates the list of hardware addresses in the address table maintained by
the lower-layer address table data.

Required

Output ListOfNode_id Indicates the NodeID list in the address table maintained by the lower-layer
address table data.

Required

Output ListOfMasterRout
er_Flag

List of IDs indicating whether or not the node corresponding to the sending
address maintained by the lower-layer sending address table data is the
master router: 1 for the master router and 0 for otherwise.

Required

Output Return Value TRUE: Normal, FALSE: Error Optional

3-31

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
3 Level 1 ECHONET Basic API Specifications

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(34) Master router notification (Optional)
Requests the communication middleware to notify the lower-layer communication software

of whether or not its own node is the master router.

Table 3.35 API Input/Output Data for Master Router Notification

Direction Data name Contents and condition Remarks

Input device_id Specifies the lower-layer communication software ID acquired from the
lower-layer communication software type specific request service.

Optional

Output Return Value TRUE: Normal, FALSE: Error Optional

(35) Hardware address data acquisition (Optional)
Requests the lower-layer communication software to provide the hardware address data

maintained. The output data includes the hardware address.

Table 3.36 API Input/Output Data for Hardware Address Data Acquisition

Direction Data name Contents and condition Remarks

Input device_id Specifies the lower-layer communication software ID acquired from the
lower-layer communication software type specific request service.

Optional

Output hardwareaddress Indicates the hardware addresses maintained by the lower-layer address
table data.

Required

Output Return Value TRUE: Normal, FALSE: Error Optional

4-1

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Chapter 4 Level 2 ECHONET Basic API Specifications
(For C Language)

The Level 2 ECHONET Basic API Specifications specify functions for the following languages in
consideration of the reusability of applications to be developed using the Basic API. Functions
shall be specified for other languages as necessary.

(1) C (ANSI) language
(2) JAVATM language

This section describes the Level 2 ECHONET Basic API specifications only for language (1)
above. Function details are specified because the specifications for Level 2 are intended to secure
interchangeability of the communication middleware from the viewpoint of the application
software developer. The Basic API functions to be specified for C language are based on the
following assumptions. This does not mean that the setting and use of functions other than those
specified in this Section is prohibited.

• An 8-bit to 32-bit C-language-compatible microcomputer
• An operating system such as Windows or µITRON

The ECHONET standard targets mainly home devices (white goods). Even when Basic API
functions are mounted on a device to implement a single function, mounting must be achieved
without increasing the load. For Level 2 ECHONET Basic API functions for the C language, both
low-level and high-level API functions are supposed. In this standard, V 1.0, priority is placed on
interchangeability for the communication middleware of application software, and low-level
functions are specified in detail.
High-level functions shall be specified as required in the future.

• Low-level Basic API functions (required)
 A function that enables the function operations specified in Chapter 3 using the most basic

object operations.
• High-level Basic API functions

(1) A function that enables the function operations specified in Chapter 3 in a form that
can explicitly recognize actual operation targets.

In the following section (4.1), constant specifications to be commonly used for functions are
described together with a list of low-level Basic API functions and their detailed specifications.

4-2

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.1 Constant Specifications
In this section, specifications of the constants to be used as labels of return values and data
types are described. In subsequent sections, the label names shown in this section are used to
describe detailed function specifications. Constants shown here are of the following seven
types:

(1) Function return value
(2) ID type
(3) ESV code
(4) Data type
(5) Access rule
(6) Communication middleware status
(7) Announcement specification at state transition

Label names are indicated for reference. If the correspondence is clear, other label names
may be usable. The respective details are shown below.

4-3

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(1) Function return values
EAPI_NO_ERROR : 0 (Success in processing)
EAPI_SYSCALL : 1 (System call error)
EAPI_NOMOREOPEN : 2 (Session-number over)
EAPI_NOTOPEN : 3 (Session not opened or not started)
EAPI_ILLEGAL_PARAM : 4 (Illegal parameter)
EAPI_NOTFOUND : 5 (Specified target not found)
EAPI_NOTFOUND_NODE : 50 (Control device not found)
EAPI_NOTFOUND_OBJ : 51 (Control object not found)
EAPI_NOTFOUND_EPC : 52 (Control property not found)
EAPI_EXIST : 6 (Specified target exists)
EAPI_EXIST_NODE : 60 (Control device exists)
EAPI_EXIST_OBJ : 61 (Control object exists)
EAPI_EXIST_EPC : 62 (Control property exists)
EAPI_EXIST_MEMBER : 63 (Control element exists)
EAPI_NORESOURCE : 7 (Insufficient resource)
EAPI_NOCONDITION : 8 (Uncontrollable)
EAPI_NODELETE : 9 (Delete disable)
EAPI_TIMEOUT : 10 (Communication timeout)
EAPI_DATASIZE_EROR : 11 (Data size error)
EAPI_NOTSEND : 12 (Data not sent)
EAPI_MEMBER_EPC : 13 (Array element property)
EAPI_NOTMEMBER_EPC : 14 (No array element property)
EAPI_NOTFOUND_MNO : 15 (Array element not found)
EAPI_MID_ERROR : 16 (ECHONET Communications Processing

Block error)
EAPI_PRO_ERROR : 17 (Protocol difference absorption processing

block error)
EAPI_LOW_ ERROR : 18 (Low-order communication module error)
EAPI_NORECEIVE : 19 (No receive data)
EAPI_UNACCEPTABLE : 100 (Acquisition Acceptance Unavailable)
EAPI_MOMENTARY_ERROR : 110 (Temporary Error)
EAPI_ETC_ERROR : 20 (Other error)

(2) ID types

APIVAL_NODE_KIND : 0 (Device ID)
APIVAL_EA_KIND : 1 (ECHONET address)
APIVAL_BROAD_KIND : 2 (Broadcast)

4-4

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(3) ESV codes
ESV_SetI : 0x60 (Request for writing a property value not requiring a

response)
ESV_SetC : 0x61 (Request for writing a property value requiring a

response)
ESV_Get : 0x62 (Request for reading a property value)
ESV_INF_REQ : 0x63 (Request for notifying a property value)
ESV_SetMI : 0x64 (Request for writing a property value of element

specification not requiring a response)
ESV_SetMC : 0x65 (Request for writing a property value of element

specification requiring a response)
ESV_GetM : 0x66 (Request for reading a property value element

specification)
ESV_INFM_REQ : 0x67 (Request for reporting a property value element

specification)
ESV_AddMI : 0x68 (Request for adding a property value element

specification requiring no response)
ESV_AddMC : 0x69 (Request for adding a property value element

specification requiring a response)
ESV_DelMI : 0x6A (Request for deleting a property value element

specification requiring no response)
ESV_DelMC : 0x6B (Request for deleting a property value element

specification requiring a response)
ESV_CheckM : 0x6C (Request for checking a property value element

specification)
ESV_AddMSI : 0x6D (Request for adding a property value element requiring

no response)
ESV_AddMSC : 0x6E (Request for adding a property value element requiring a

response)
ESV_Set_Res : 0x71 (Response to a property value write)
ESV_Get_Res : 0x72 (Response to a property value read)
ESV_INF : 0x73 (Notice of a property value)
ESV_INF_AREQ : 0x74 (Request for confirming a property value notification)
ESV_SetM_Res : 0x75 (Response to a property value element specification

write)
ESV_GetM_Res : 0x76 (Response to a property value element specification read)
ESV_INFM : 0x77 (Notice of a property value element specification)
ESV_INFM_AREQ : 0x78 (Request for confirming a property value element

specification notification)
ESV_AddM_Res : 0x79 (Response to a property value element specification

addition)
ESV_INF_Ares : 0x7A (Response to a property value notification check)
ESV_DelM_Res : 0x7B (Response to a property value element specification

deletion)

4-5

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ESV_CheckM_Res : 0x7C (Response to a property value element specification
existence check)

ESV_INFM_Ares : 0x7D (Response to a property value array specification
notification check)

ESV_AddMS_Res : 0x7E (Response to a property value element addition)
ESV_SetI_SNA : 0x50 (Negative response to a property value write request)
ESV_SetC_SNA : 0x51 (Negative response to a property value write request)
ESV_Get_SNA : 0x52 (Negative response to a property value read)
ESV_INF_SNA : 0x53 (Negative response to a property value notification)
ESV_SetMI_SNA : 0x54 (Negative response to a property value element

specification write)
ESV_SetMC_SNA : 0x55 (Negative response to a property value element

specification write)
ESV_GetM_SNA : 0x56 (Negative response to a property value element

specification read)
ESV_INFM_SNA : 0x57 (Negative response to a property value element

specification notification)
ESV_AddMI_SNA : 0x58 (Negative response to a property value element

specification addition)
ESV_AddMC_SNA : 0x59 (Negative response to a property value element

specification addition)
ESV_DelMI_SNA : 0x5A (Negative response to a property value element

specification deletion)
ESV_DelMC_SNA : 0x5B (Negative response to a property value element

specification deletion)
ESV_CheckM_SNA : 0x5C (Negative response to a property value element

specification existence check)
ESV_AddMSI_SNA : 0x5D (Negative response to a property value element addition)
ESV_AddMSC_SNA : 0x5E (Negative response to a property value element addition)

(4) Data types
APIVAL_DATA_SCHAR : 0 (signed char)
APIVAL_ DATA_SSHORT : 1 (signed short)
APIVAL_ DATA_SLONG : 2 (signed long)
APIVAL_ DATA_UCHAR : 3 (unsigned char)
APIVAL_ DATA_USHORT : 4 (unsigned short)
APIVAL_ DATA_ULONG : 5 (unsigned long)
APIVAL_ DATA_NOTYPE : 6 (No data type)

4-6

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(5) Access rule
APIVAL_RULE_SET : 0x0001 (Set)
APIVAL_RULE_GET : 0x0002 (Get)
APIVAL_RULE_ANNO : 0x0040 (Anno)
APIVAL_RULE_SETM : 0x0100 (Element specification setting)
APIVAL_RULE_GETM : 0x0200 (Element specification getting)
APIVAL_RULE_ADDM : 0x0400 (Request for adding an element

specification)
APIVAL_RULE_DELM : 0x0800 (Request for deleting an element

specification)
APIVAL_RULE_CHECKM : 0x1000 (Request for checking the existence of an

element specification)
APIVAL_RULE_ADDMS : 0x2000 (Request for adding an element)
APIVAL_RULE_ANNOM : 0x4000 (Request for notifying an element

specification)

(6) Communication middleware status

MID_STS_STOP : 0 (Stop status)
MID_STS_INIT : 1 (Initializing status, completion of initialize

processing)
MID_STS_RUN : 2 (Normal processing status)
MID_STS_APL_ERR : 3 (Application error)
MID_STS_PRO_ERR : 4 (Protocol difference absorption processing

block error)
MID_STS_LOW_ERR : 5 (Low-order communications software error)

(7) Announcement specification at state transition

APIVAL_ANNO_ON : 1 (Announcement)
APIVAL_ANNO_OFF : 0 (No announcement)

4-7

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.2 List of Low-level Basic API Functions
Unlike other function groups, the functions described in this section exert control at the same
level without explicitly indicating target control objects. A person well-versed in ECHONET
Communication Middleware operations and familiar with ECHONET objects can perform
every necessary control using only the functions in this function group. These functions
require expert operation but enable the control of every ECHONET object with a small
number of functions.

Table 4.1 List of Level 2 Basic API Functions for C Language (1/2)

No. Function name Name Supplement

1 MidOpenSession ECHONET Communications Processing Block operation start
request function

Optional

2 MidCloseSession ECHONET Communications Processing Block operation end
request function

Optional

3 MidSetEA ECHONET address setting function Optional

4 MidGetEA ECHONET address set value getting function Optional

5 MidGetNodeID Device ID value getting function Optional

6 MidSetControlVal ECHONET Communication Middleware operation information
setting

Optional

7 MidGetControlVal ECHONET Communication Middleware operation information
getting

Optional

MidSetSendEpc Required 8

MidExtSetSendEpc
Function for requesting the transmission for ECHONET object
properties Optional

MidSetEpc Required 9

MidExtSetEpc
Function for requesting the writing of data to an ECHONET object
property Optional

MidGetReceiveEpc Required 10

MidExtGetReceiveEpc
Function (1) for requesting the reading of data from an ECHONET
object property Optional

11 MidGetEpc Function (2) for requesting the reading of data from an ECHONET
object property

Required

MidSetSendCheckEpc Required 12

MidExtSetSendCheckEpc

Function for confirming the writing of data to an ECHONET object
property

Optional

13 MidSetSendEpcM,
MidExtSetSendEpcM

ECHONET object array property data write request function (1) Optional

14 MidSetEpcM
MidExtSetEpcM

ECHONET object array property data write request function (2) Optional

15 MidGetReceiveEpcM
MidExtGetReceiveEpcM

ECHONET object array property data read request function (1) Optional

16 MidGetEpcM ECHONET object array property data read request function (2) Optional

17 MidSetSendCheckEpcM
MidExtSetSendCheckEpcM

ECHONET object array property data write check function Optional

18 MidGetReceiveCheckEpc
MidExtGetReceiveCheckEpc

ECHONET property data read check function Optional

19 MidGetEpcSize ECHONET property size getting function Optional

20 MidGetEpcAttrib ECHONET object property attribute getting Optional

4-8

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Table 4.1 List of Level 2 Basic API Functions for C Language (2/2)

No. Function name Name Supplement

21 MidGetEpcMember ECHONET object array property array element information getting
function

Optional

22 MidCreateNode Control device additional creation function Optional

23 MidCreateObj ECHONET object additional creation function Optional

24 MidCreateEpc Non-array ECHONET property additional creation function Optional

25 MidCreateEpcM Array ECHONET property additional creation function Optional

26 MidAddEpcMember Array ECHONET property element addition (with element No.
specification) function

Optional

27 MidAddEpcMemberS Array ECHONET property element addition (without element No.
specification) function

Optional

28 MidDeleteNode Control device deletion function Optional

29 MidDeleteObj ECHONET object deletion function Optional

30 MidDeleteEpc ECHONET property deletion function Optional

31 MidDeleteEpcMember Array ECHONET property specified element deletion function Optional

32 MidGetState ECHONET Communications Processing Block status getting function Optional

33 MidSetRecvTargetList Data receipt notice target list valid/invalid setting function Optional

34 MidAddRecvTargetList Data receipt notice target list addition function Optional

35 MidDeleteRecvTargetList Data receipt notice target list deletion function Optional

36 MidGetRecvTargetList Data receipt notice target list getting function Optional

37 MidStart ECHONET Communications Processing Block initialization function Optional

38 MidReset ECHONET Communications Processing Block initialization function Optional

39 MidInit ECHONET Communications Processing Block initialization function Required

40 MidInitAll ECHONET Communications Processing Block initialization function Optional

41 MidRequestRun ECHONET Communications Processing Block operation start
function

Required

42 MidSuspend ECHONET Communications Processing Block suspension request
function

Optional

43 MidWakeUp ECHONET Communications Processing Block operation restart
request function

Optional

44 MidSetSendMulti,
MidExtSetSendMulti

 Send request function corresponding to the ECHONET object
non-array property (For multiple property control)

Optional

45 MidGetReceiveEpcMulti2 ECHONET object non-array property data read request function (3)
(applicable to multiple property control)

Optional

46 MidSetSecureContVal Secure communication data setup function Optional

47 Midstop ECHONET communication stop request function Optional

48 MidHalt ECHONET complete stop request function Optional

49 MidGetAddressTableDataSiz
e

Lower-layer communication software address table data size
acquisition function

Optional

50 MidGetAddressTableData Lower-layer communication software address table data acquisition
function

Optional

51 MidSetMasterRouterFlag Master router notification function Optional

52 MidGetHardwareAddress Hardware address data acquisition function Optional

53 MidGetReceiveCheckEpcMult Multiple ECHONET property data readout check function Optional

4-9

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

i

54 MidGetDevID Lower-layer communication software installation information request
function

Optional

55 MidGetLastSendError Last send error information acquisition function Optional

4-10

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3 Low-Level Basic API Function Detailed Specifications
This section provides detailed specifications for each function shown in Table 4.1, indicating
the following seven items:

(1) Name
 Name of function.

(2) Function
 Explanation of function.

(3) Syntax
 Function syntax.

(4) Explanation
 Detailed specifications for arguments and variables.

(5) Return value
 Indicates return value.

(6) Structure
 Specifications of function structure, if it exists.

(7) Notes/restrictions
 Precautions or restrictions, as appropriate.

Note: The “node_id” indicated in the detailed specifications differs from the “NodeID”

indicated for ECHONET addresses in Part 2. The “node_id” in Part 4 represents the ID
(device ID) for identifying the nodes (devices) to be managed within the middleware.

4-11

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.1 MidOpenSession
(1) Name
MidOpenSession ECHONET Communications Processing Block operation start request

function

(2) Function
 Opens a session of the communication middleware.

(3) Syntax
long MidOpenSession(short MidNo)

(4) Explanation [Optional function]
 Starts a session with the communication middleware specified in MidNo. When there

is only one communication middleware on the computer, always specify 0 in MidNo.
When more than one communication middleware exists on the computer, use MidNo
to specify the communication middleware to open the session. Use the MidInit
function or start communication middleware in another way. Call this function before
using any API function other than the MidInit function.

MidNo : [in] Communication middleware No.

(5) Return value
EAPI_NO_ERROR : Success in opening
EAPI_SYSCALL : ECHONET Communications Processing Block not started.
EAPI_NOMOREOPEN : Number of sessions over.

(6) Structure
 None

(7) Notes/restrictions
 If session open processing is already completed, execute this call, and the previous

session will be automatically closed.

4-12

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.2 MidCloseSession
(1) Name
MidCloseSession ECHONET Communications Processing Block operation end request

function

(2) Function
 Closes an open session of the communication middleware.

(3) Syntax
long MidCloseSession(void)

(4) Explanation [Optional function]
 Terminates all currently open sessions and releases all communication resources with

communication middleware. Usually, this processing is performed when the DLL is
detached from the process. Accordingly, this function does not need to be called. This
function is called when it is necessary to terminate a session explicitly for some
reason.

(5) Return value
EAPI_NO_ERROR : Success in closing
EAPI_NOTOPEN : Non-start (Session not opened)

(6) Structure
 None

(7) Notes/restrictions
 None

4-13

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.3 MidSetEA
(1) Name
MidSetEA ECHONET address setting function

(2) Function
 Sets the ECHONET address of the self-node and the ECHONET address of another

device under control on the self-node.

(3) Syntax
long MidSetEA(short node_id, short dev_id, short ea)

(4) Explanation [Optional function]
 Sets the node_id of the self-node to 0. In other cases, this function indicates another

device under the control of the ECHONET Communications Processing Block. This
function is used for data operations on the self-node. The function can be called at any
time during setting of the ECHONET address.
node_id : [in] Device ID
dev_id : [in] Low-order communications software ID
 (Valid only for the self-node. When there is one type of low-order

medium, set this parameter to 0.)
ea : [in] Setting ECHONET address

(5) Return value
EAPI_NO_ERROR : Success in setting
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal node_id or dev_id

(6) Structure
 None

(7) Notes/restrictions
 None

4-14

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.4 MidGetEA
(1) Name
MidGetEA ECHONET address set value acquisition function

(2) Function
 Gets the set ECHONET address.

(3) Syntax
long MidGetEA(short node_id, short dev_id, short *ea)

(4) Explanation [Optional function]
 Obtains the set value of the ECHONET address of the self-device or another device

under the control of the ECHONET Communications Processing Block (only data
operations on the self-node).

 This function can be called at any time during acquisition of the ECHONET address.
node_id : [in] Device ID
dev_id : [in] Low-order communications software ID
 (Valid only for the self-device. When there is one type of low-order

medium, set it to 0.)
ea : [out] Acquired ECHONET address

(5) Return value
EAPI_NO_ERROR : Success in setting
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal node_id

(6) Structure
 None

(7) Notes/restrictions
 None

4-15

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.5 MidGetNodeID
(1) Name
MidGetNodeID Device ID value acquisition function

(2) Function
 Gets a device ID.

(3) Syntax
long MidGetMachineID(short ea, short *node_id, short *dev_id)

(4) Explanation [Optional function]
 Obtains the device ID for which the specified ECHONET address is set. When

multiple low-order media are mounted on the self-device, the lower-layer
communication software ID is also obtained. The function can be called at any time
during device ID or lower-layer communication software ID acquisition.
ea : [in] ECHONET address
node_id : [out] Device ID save area
dev_id : [out] Low-order communications software ID save area
 (Valid for the self-device. When there is one type of low-order

medium, 0 is saved.)

(5) Return value
EAPI_NO_ERROR : Success in setting
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal ea

(6) Structure
 None

(7) Notes/restrictions
 None

4-16

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.6 MidSetControlVal
(1) Name
MidSetControlVal ECHONET Communications Processing Block operation information

setting function

(2) Function
 Sets the operation information of the communication middleware.

(3) Syntax
long MidSetControlVal(MidControl *m_data)

(4) Explanation [Optional function]
 Sets the operation information of the communication middleware being started. The

function can be called at any time during information setting.
m_data : [in]Communication middleware operation information acquisition

area

(5) Return value
EAPI_NO_ERROR : Success in setting
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal contents of data

(6) Structure
typedef struct {
 short sync; /* Each service transmission function synchronous mode
 0: Non-synchronization mode (A return is made form the function

before completion of a communication. At actual completion of a
communication, send enable status is recognized by
ObjWriteCheck() or ObjWriteCheckM().)

 1: Synchronization (A return is made from the function after
transmission completion.)

 2: Synchronization 2 (For services requiring a response, a return is
made from the function after completion of the response.) */

 short sync_timer; /* Synchronization timeout value
 (Valid unless sync is 0. The unit is 100 ms.)
 When sync is 0, non-synchronization shall be selected. */
} MidControl;

(7) Notes/restrictions
In the case of no setting, the initial value shall be as follows:

sync : 0 (Non-synchronization)
sync_timer : 0

4-17

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.7 MidGetControlVal
(1) Name
MidGetControlVal ECHONET Communications Processing Block operation

information acquisition function

(2) Function
 Gets communication middleware operation information.

(3) Syntax
long MidGetControlVal(MidControl *midset)

(4) Explanation [Optional function]
 Obtains operation information of the communication middleware being started. The

function can be called at any time during information acquisition.
Midset : [out] Operation information acquisition area

(5) Return value
EPAI_NO_ERROR : Success in acquisition
EAPI_NOTOPEN : Non-start (Session not opened)

(6) Structure
typedef struct {
 short sync; /* Service transmission function synchronous mode */
 0: Asynchronous (A return from the function is made without waiting

for completion of communication. The actual completion of the
transmission processing is recognized by the detection of the status
change to the “transmittable” status through ObjWriteCheck() or
ObjWriteCheckM().)

 1: Synchronous (A return from the function is made after completion
of transmission.)

 2: Synchronous 2 (A return from the function is made after
completion of response in the case of a service that requires a
response.) */

 short sync_timer; /* Communication synchronization timeout value */
 (Effective when sync is other than 0 (unit: 100ms).)
 When sync is 0, asynchronous is selected. */
} MidControl;

(7) Notes/restrictions
 The initial values used in the case where the settings have not been set are as follows:
 sync: 0 (asynchronous)
 sync_timer: 0

4-18

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.8 MidSetSendEpc, MidExtSetSendEpc
(1) Name
MidSetSendEpc, MidExtSetSendEpc

 The send request function corresponding to the ECHONET object
property

(2) Function
 Writes data in non-array ECHONET property and transmits a service.

(3) Syntax
long MidSetSendEpc (short id_kind, short id, long seoj_code, short deoj_code,
 short epc_code, short esv_code, const char * data, short size)
long MidExtSetSendEpc (short id_kind, short id, long seoj_code, short deoj_code,
 short epc_code, short esv_code, const char * data, short size,
 EXT_CONT *extcont)

(4) Explanation [MidExtSetSendEpc: Optional function]
 MidSetSendEpc writes data into the ECHONET property specified by id, eoj_code,

and epc_code, and transmits the service specified by esv_code. This function can be
called at any time at which data are to be written.

 MidExtSetSendEpc has basically the same capabilities as MidSetSendEpc. However,
the former can exercise secure communication and other extended setup features over
the data it writes.

id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
 APIVAL_BROAD_KIND : 2 (Broadcast)
id : [in] Device ID, ECHONET address, or broadcast type
seoj_code : [in] SEOJ code (Only 3 low-order bytes are used.)
 When SEOJ does not exist, set to -1.
deoj_code : [in] DEOJ code (Only 3 low-order bytes are used.)
 When WEOJ does not exist, set to -1.
epc_code : [in] EPC code (Only 1 low-order byte is used.)
esv_code : [in] ESV code

 ESV_SetI : 0x60 (Request for writing a property value not requiring
a response)

 ESV_SetC : 0x61 (Request for writing a property value requiring a
response)

 ESV_Get : 0x62 (Request for reading a property value)
 ESV_Inf_Req : 0x63 (Request for notifying a property value)
 ESV_INF : 0x73 (Notice of a property value)

4-19

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 ESV_INF_AREQ : 0x74 (Property value notification check request)
data : [in] Pointer to data contents
size : [in] Data size
extcont : [in] Secure communication option

(5) Return value

EAPI_NO_ERROR : Success in setting
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal id_kind or esv_code
EAPI_NOTFOUND_EPC : Property not found
EAPI_DATASIZE_EROR : Illegal write data size
EAPI_NORESOURCE : Insufficient resource

 Only when id_kind is EA_KIND or
BROAD_KIND

EAPI_NOCONDITION : Uncontrollable property
EAPI_MEMBER_EPC : Array element property
EAPI_NOTSEND : Data not sent
EAPI_TIMEPOUT : Communication timeout (in the synchronous

communication mode)
EAPI_ETC_ERROR : Specified extended communication feature

unexercisable

(6) Structure
typedef struct｛

shoｒt ext_hed; /* Code indicating the type of this structure
0x0001: Secure communication specified */

shoｒt cipher; /* Ciphering (method selection included)
 0x0000: No ciphering

0x0001: DES
 0x0002‐0xFFFF: reserved for future use */

short authent; /* Access restriction level selection
0x0001: Anonymous level
0x0002: User level
0x0003: Service Provider level
0x0004: Maker level
0x0005‐ 0xFFFF: reserved for future use */

4-20

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

 Anonymous Level

 User Level

 Service Provider Level 1

 Service Provider Level 2

 Service Provider Level 3

 Service Provider Level 4

 Service Provider Level 5

 Service Provider Level 6

 Service Provider Level 7

 Service Provider Level 8

 Service Provider Level 9

 Service Provider Level 10

 Service Provider Level 11

 Service Provider Level 12

 Service Provider Level 13

 Maker Level

short authentication /* Authentication process selection */
long makerKeyIndex /* Maker key index */
short makerKeysize /* Maker key size */

char makerKey /* Maker key storage area */
} EXT_CONT

(7) Notes
 Array elements cannot be handled.

4-21

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.9 MidSetEpc, MidExtSetEpc
(1) Name

MidSetEpc, MidExtSetEpc ECHONET object property data write request function
(2) Function

Writes data in ECHONET property.

 Writes data in non-array ECHONET property.

(3) Syntax
long MidSetEpc (short id_kind, short id, long eoj_code, short epc_code, const char*
data, short size)
long MidExtSetEpc (short id_kind, short id, long eoj_code, short epc_code, const
char* data, short size, EXT_CONT *extcont)

(4) Explanation [MidExtSetEpc: Optional function]
 MidSetEpc writes data into the ECHONET property specified by id, eoj_code, and

epc_code. This function can be called at any time at which data are to be written. It
provides the status notification service only when the data written into the local device
is different from the previous data and the status change notification process is
enabled.

 MidExtSetEpc has basically the same capabilities as MidSetEpc. However, the former
can exercise secure communication and other extended setup features for data to be
communicated externally when it provides the status notification service (only in
situations where the status change notification process is enabled).
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
data : [in] Data setting
size : [in] Data size
extcont : [in] Secure communication option

(5) Return value
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_EPC : Property not found
EAPI_MEMBER_EPC : Array element property
EAPI_DATASIZE_EROR : Illegal data size
EAPI_ILLEGAL_PARAM : Illegal id_kind
EAPI_ETC_ERROR : Specified extended communication feature

4-22

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

unexercisable

(6) Structure
typedef struct｛

shoｒt ext_hed; /* Code indicating the type of this structure
 0x0001: Secure communication specified */

shot cipher; /* Ciphering (method selection included)
 0x0000: No ciphering
 0x0001: DES
 0x0002‐0xFFFF: reserved for future use */

short authent; /* Access restriction level selection
 0x0001: Anonymous level
 0x0002: User level
 0x0003: Service Provider level
 0x0004: Maker level
 0x0005‐ 0xFFFF: reserved for future use */

b15 b14 b13 B12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

 Anonymous Level

 User Level

 Service Provider Level 1

 Service Provider Level 2

 Service Provider Level 3

 Service Provider Level 4

 Service Provider Level 5

 Service Provider Level 6

 Service Provider Level 7

 Service Provider Level 8

 Service Provider Level 9

 Service Provider Level 10

 Service Provider Level 11

 Service Provider Level 12

 Service Provider Level 13

 Maker Level

short authentication /* Authentication process selection */
long makerKeyIndex /* Maker key index */
short makerKeysize /* Maker key size */

char makerKey /* Maker key */
} EXT_CONT

4-23

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(7) Notes
 Array elements cannot be handled.

4-24

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.10 MidGetReceiveEpc, MidExtGetReceiveEpc
(1) Name
MidGetReceiveEpc, MidExtGetReceiveEpc

ECHONET object non-array property data read request function (1)

(2) Function
 Reads data of received non-array ECHONET property.

(3) Syntax
long MidGetReceiveEpc(short id_kind, short id, long eoj_code, short epc_code,
 short buff_size, short esv_code, char* data, short *data_size, , long *eoj_code2)
long MidExtGetReceiveEpc(short id_kind, short id, long eoj_code, short epc_code,
 short buff_size, short esv_code, char* data, short *data_size, , long *eoj_code2,
 EXT_CONT *extcont)

(4) Explanation [MidExtGetReceiveEpc: Optional function]
 MidGetReceiveEpc reads received data about the ECHONET property specified by id,

eoj_code, and epc_code. This function can be called whenever the data is to be read.
 MidExtGetReceiveEpc has basically the same capabilities as MidGetReceiveEpc.

However, the former can handle he reading of data for which secure communication
or other extended setup features is enabled.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] SEOJ code (Only 3 low-order bytes are used; -1 when the code

does not exist.)
 (-1 for a request for an extended message, such as an unanalyzed

secure communication message)
epc_code : [in] EPC code (Only 1 low-order byte is used; -1 when the code

does not exist.)
 (-1 for a request for an extended message, such as an unanalyzed

secure communication message)
buff_size : [in] Area size
esv_code : [in] ESV code save area (Only 1 low-order byte is used; -1 when the

code does not exist.)
 (-1 for a request for an extended message such as an unanalyzed

secure communication message)
data : [out] Data contents save area
data_size : [out] Data read size
eoj_code2 : [out] SEOJ code or DEOJ code on communication
 Only 3 high-order bytes are used; -1 when the code does not exist.
 (If “eoj_code2” exists, eoj_code specifying the EOJ of another node

4-25

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

serves as a communication DEOJ code and eoj_code specifying the
EOJ of the local node serves as a communication SEOJ code.)

extcont : [out] Extended communication option

(5) Return value
EAPI_NO_EROR : Success in reading
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal id_kind
EAPI_NOTFOUND_EPC : Property not found
EAPI_NORECEIVE : No data received
EAPI_MEMBER_EPC : Array element property
EAPI_DATASIZE_EROR : Illegal data size
EAPI_ETC_ERROR : Specified extended communication feature

unexercisable

(6) Structure
typedef struct｛

shoｒt ext_hed; /* Code indicating the type of this structure
0x0001: Secure communication specified */

shoｒt cipher; /* Ciphering (method selection included)
 0x0000: No ciphering

0x0001: DES
 0x0002‐0xFFFF: reserved for future use */

short authent; /* Access restriction level selection
0x0001: Anonymous level
0x0002: User level
0x0003: Service Provider level
0x0004: Maker level
0x0005‐ 0xFFFF: reserved for future use */

4-26

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

 Anonymous Level

 User Level

 Service Provider Level 1

 Service Provider Level 2

 Service Provider Level 3

 Service Provider Level 4

 Service Provider Level 5

 Service Provider Level 6

 Service Provider Level 7

 Service Provider Level 8

 Service Provider Level 9

 Service Provider Level 10

 Service Provider Level 11

 Service Provider Level 12

 Service Provider Level 13

 Maker Level

short authentication /* Authentication process selection */
long makerKeyIndex /* Maker key index */
short makerKeysize /* Maker key size */
char makerKey /* Maker key */

} EXT_CONT

 (7) Notes
 The array element specification cannot be read.

4-27

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.11 MidGetEpc
(1) Name
MidGetEpc ECHONET object non-array property data read request function (2)

(2) Function
 Request to read data from non-array ECHONET property regardless of reception/no

reception.

(3) Syntax
long MidGetEpc (short id_kind, short id, long eoj_code, short epc_code, short
buff_size, char* data, short *data_size)

(4) Explanation
 Obtains the current status of the ECHONET property specified in id, eoj_code, and

epc_code under the control of the ECHONET Communications Processing Block.
This function can be called at any time during status reading. The current status can be
obtained regardless of reception/no reception.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
buff_size : [in] Area size
data : [in] Data contents save area
data_size : [in] Data read size

(5) Return value
EAPI_NO_EROR : Success in reading
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_EPC : Property not found
EAPI_MEMBER_EPC : Array element property
EAPI_ILLEGAL_PARAM : Illegal id_kind
EAPI_NOCONDITION : Uncontrollable property
EAPI_DATASIZE_EROR : Data size error

(6) Structure
 None

(7) Notes
 The array element specification cannot be read.

4-28

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.12 MidSetSendCheckEpc, MidExtSetSendCheckEpc
(1) Name
MidSetSendCheckEpc ECHONET object non-array property data read check function

(2) Function
 Checks if data is written to the non-array ECHONET property.

(3) Syntax
long MidSetSendCheckEpc (short id_kind,short id, long eoj_code, short epc_code)
long MidExtSetSendCheckEpc (short id_kind,short id, long eoj_code, short epc_code,

EXT_CONT *extcont)

 (4) Explanation
 Checks whether or not data can be written into the ECHONET property specified in id,

eoj_code, and epc_code. This function can be called at any time during data
writability check. In the case of write disable, the contents previously written shall
include data that is not yet transmitted.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
extcont : [in] Extended communication option

(5) Return value
EAPI_NO_ERROR : Write enable
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal id_kind
EAPI_NOTFOUND_EPC : Property not found
EAPI_NOTSEND : Transmission waiting status
EAPI_MEMBER_EPC : Array element property
EAPI_NORESOURCE : Insufficient resources
EAPI_NOCONDITION : Write disable property
EAPI_ETC_NOCONDITION : Property that cannot be written by the specified

 extended communication feature

4-29

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(6) Structure
typedef struct｛

shoｒt ext_hed; /* Code indicating the type of this structure
0x0001: Secure communication specified */

shoｒt cipher; /* Ciphering (method selection included)
 0x0000: No ciphering

0x0001: DES
 0x0002‐0xFFFF: reserved for future use */

short authent; /* Access restriction level selection
0x0001: Anonymous level
0x0002: User level
0x0003: Service Provider level
0x0004: Maker level
0x0005‐ 0xFFFF: reserved for future use */

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

 Anonymous Level

 User Level

 Service Provider Level 1

 Service Provider Level 2

 Service Provider Level 3

 Service Provider Level 4

 Service Provider Level 5

 Service Provider Level 6

 Service Provider Level 7

 Service Provider Level 8

 Service Provider Level 9

 Service Provider Level 10

 Service Provider Level 11

 Service Provider Level 12

 Service Provider Level 13

 Maker Level

short authentication /* Authentication process selection */
long makerKeyIndex /* Maker key index */
short makerKeysize /* Maker key size */
char makerKey /* Maker key */

4-30

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

} EXT_CONT

(7) Notes
 The array element specification cannot be read.

4-31

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.13 MidSetSendEpcM, MidExtSetSendEpcM
(1) Name
MidSetSendEpcM, MidSetSendEpcM

 The send request function corresponding to the ECHONET object
array property

(2) Function
 Data is written in an array ECHONET property using an element specification, and a

service is transmitted.

(3) Syntax
long MidSetSendEpcM(short id_kind, short id, long seoj_code, short deoj_code, short

epc_code, short esv_code, short member_no, const char* data, short
size)

long MidExtSetSendEpcM(short id_kind, short id, long seoj_code, short deoj_code,
short epc_code, short esv_code, short member_no, const char* data,
short size, EXT_CONT *extcont)

(4) Explanation [Optional function]
 MidSetSendEpcM writes data into the “member_no”-specified element of the

ECHONET property specified by id, eoj_code, and epc_code, and transmits the
“esv_code”-specified service.

 This function can be called at any time during data writing. The element is validated
upon completion of writing.

 MidExtSetSendEpcM has basically the same capabilities as MidSetSendEpcM.
However, the former can exercise the secure communication feature for the data it
writes.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
 APIVAL_BROAD_KIND : 2 (Broadcast)
id : [in] Device ID, ECHONET address, or broadcast address
seoj_code : [in] SEOJ code (Only 3 low-order bytes are used.)

 When SEOJ does not exist, set to -1.
deoj_code : [in] DEOJ code (Only 3 low-order bytes are used.)

 When DEOJ does not exist, set to -1.
epc_code : [in] EPC code (Only 1 low-order byte is used.)
esv_code : [in] ESV code

ESV_SetIM : 0x64 (Request for writing a property value of an element
specification not requiring a response)

4-32

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ESV_SetCM : 0x65 (Request for writing a property value of an element
specification requiring a response)

ESV_GetM : 0x66 (Request for reading a property value of an element
specification)

ESV_INFMReq : 0x67 (Request for notifying a property value of an element
specification)

ESV_AddMI : 0x68 (Request for adding a property value of an element
specification not requiring a response)

ESV_AddMC : 0x69 (Request for adding a property value of an element
specification requiring a response)

ESV_DelMI : 0x6A (Request for deleting a property value of an element
specification not requiring a response)

ESV_DelMC : 0x6B (Request for deleting a property value of an element
specification requiring a response)

ESV_CheckM : 0x6C (Request for checking a property of an element
specification)

ESV_AddMI : 0x6D (Request for adding an element specification not
requiring a response)

ESV_AddMC : 0x6E (Request for adding an element specification requiring
a response)

ESV_INFM : 0x77 (Notice of a property value of an element
specification)

 ESV_INFM_AREQ:Request for checking the notification of a property value
of element specification

member_no : [in] Element No. (0 to 0xFFFE)
data : [in] Setup data
size : [in] Data size
extcont : [in] Extended communication option

(5) Return value
EAPI_NO_ERROR : Success in setting
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal id_kind or esv_code
EAPI_NOTFOUND_EPC : Property not found
EAPI_DATASIZE_EROR : Illegal write data size
EAPI_NORESOURCE : Insufficient resources
 Only when id_kind is EA_KIND or BROAD_KIND
EAPI_NOCONDITION : Uncontrollable property
EAPI_NOT_MOBJECT : No array element property
EAPI_NOTFOUND_MNO : Specified array element not found
EAPI_NOTSEND : Data not sent

4-33

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

EAPI_TIMEOUT : Communication timeout (for synchronization only)
EAPI_ETC_ERROR : Specified extended communication feature

 unexercisable

(6) Structure
typedef struct｛

shoｒt ext_hed; /* Code indicating the type of this structure
0x0001: Secure communication specified */

shoｒt cipher; /* Ciphering (method selection included)
 0x0000: No ciphering

0x0001: DES
 0x0002‐0xFFFF: reserved for future use */

short authent; /* Access restriction level selection
0x0001: Anonymous level
0x0002: User level
0x0003: Service Provider level
0x0004: Maker level
0x0005‐ 0xFFFF: reserved for future use */

4-34

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

 Anonymous Level

 User Level

 Service Provider Level 1

 Service Provider Level 2

 Service Provider Level 3

 Service Provider Level 4

 Service Provider Level 5

 Service Provider Level 6

 Service Provider Level 7

 Service Provider Level 8

 Service Provider Level 9

 Service Provider Level 10

 Service Provider Level 11

 Service Provider Level 12

 Service Provider Level 13

 Maker Level

short authentication /* Authentication process selection */
long makerKeyIndex /* Maker key index */
short makerKeysize /* Maker key size */
char makerKey /* Maker key */

} EXT_CONT

(7) Notes
 Write is disabled except for array element specification.

4-35

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.14 MidSetEpcM, MidExtSetEpcM
(1) Name
MidSetEpcM, MidExtSetEpcM

ECHONET object array property data write request function (2)

(2) Function
 Writes data in array ECHONET property using an element specification.

(3) Syntax
long MidSetEpcM(short id_kind, short id, long eoj_code, short epc_code,

short member_no, char* data, short size)
long MidExtSetEpcM(short id_kind, short id, long eoj_code, short epc_code,

short member_no, char* data, short size, EXT_CONT *extcont)

(4) Explanation (Optional function)
 MidSetEpcM writes data into the “member_no”-specified element of the ECHONET

property specified by id, eoj_code, and epc_code. This function can be called at any
time at which data are to be written.

 It provides the status notification service only when the data written into the local
device is different from the previous one and the status change notification process is
enabled.

 MidExtSetEpcM has basically the same capabilities as MidSetEpcM. However, the
former can exercise the secure communication feature for data to be communicated
externally.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
member_no : [in] Element No. (0 to 0xFFFE)
data : [in] Setup data
size : [in] Data size
extcont : [in] Extended communication option

(5) Return value
EAPI_NO_ERROR : Success in setting
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_EPC : Property not found
EAPI_NOT_MOBJECT : No array element property
EAPI_NOTFOUND_MNO : Specified array element not found

4-36

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

EAPI_DATASIZE_EROR : Illegal data size
EAPI_ILLEGAL_PARAM : Illegal id_kind
EAPI_ETC_ERROR : Specified extended communication feature

 unexercisable

(6) Structure
typedef struct｛

shoｒt ext_hed; /* Code indicating the type of this structure
0x0001: Secure communication specified */

shoｒt cipher; /* Ciphering (method selection included)
 0x0000: No ciphering

0x0001: DES
 0x0002‐0xFFFF: reserved for future use */

short authent; /* Access restriction level selection
0x0001: Anonymous level
0x0002: User level
0x0003: Service Provider level
0x0004: Maker level
0x0005‐ 0xFFFF: reserved for future use */

4-37

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

 Anonymous Level

 User Level

 Service Provider Level 1

 Service Provider Level 2

 Service Provider Level 3

 Service Provider Level 4

 Service Provider Level 5

 Service Provider Level 6

 Service Provider Level 7

 Service Provider Level 8

 Service Provider Level 9

 Service Provider Level 10

 Service Provider Level 11

 Service Provider Level 12

 Service Provider Level 13

 Maker Level

short authentication /* Authentication process selection */
long makerKeyIndex /* Maker key index */
short makerKeysize /* Maker key size */
char makerKey /* Maker key */

} EXT_CONT

(7) Notes
 Write is disabled except for array element specification.
 Element is validated upon completion of writing.

4-38

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.15 MidGetReceiveEpcM
(1) Name
MidGetReceiveEpcM ECHONET object array property data read request function (1)

(2) Function
 Reads element specification data of the received array ECHONET property.

(3) Syntax
long MidGetReceiveEpcM (short id_kind, short id, long eoj_code, short epc_code,
short member_no, short buff_size, short *esv_code, char* data, short *data_size, long
*eoj_code2)

(4) Explanation [Optional function]
 Reads the receive data of the array element of member_no of the ECHONET property

specified in id, eoj_code, and epc_code. This function can be called at any time during
received data reading.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
member_no : [in] Element No. (0 to 0xFFFE)
buff_size : [in] Area size
esv_code : [out] EVS code save area
data : [out] Data contents save area
data_size : [out] Read data size
eoj_code2 : [out] SEOJ code or DEOJ code on communication

 Only 3 low-order bytes are used. If the code does not exist, set to -1.

(5) Return value
EAPI_NO_EROR : Success in reading
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal id_kind
EAPI_NOTFOUND_EPC : Property not found
EAPI_NORECEIVE : No received data
EAPI_NOT_MOBJECT : No array element property
EAPI_NOTFOUND_MNO : Specified array element not found
EAPI_DATASIZE_EROR : Illegal data size

4-39

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(7) Notes
 Read is disabled except for array element specification.

4-40

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.16 MidGetFpcM
(1) Name
MidGetFpcM ECHONET object array property data read request function (2)

(2) Function
 Gets data from non-array ECHONET property regardless of reception/no reception.

(3) Syntax
long MidGetEpcM (short id_kind, short id, long eoj_code, short epc_code,
short member_no, short buff_size, char* data, short *data_size)

(4) Explanation [Optional function]
 Gets current status of the element of member_no of the ECHONET property specified

in id, eoj_code, and epc_code. This function can be called at any time during status
reading.

 The current status can be obtained regardless of reception/no reception.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
member_no : [in] Element No. (0 to 0xFFFE)
buff_size : [in] Area size
data : [out] Data contents save area
data_size : [out] Read data size

(5) Return value
EAPI_NO_ERROR : Success in acquisition
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_EPC : Property not found
EAPI_NOT_MOBJECT : No array element property
EAPI_NOTFOUND_MNO : Specified array element not found
EAPI_ILLEGAL_PARAM : Illegal id_kind
EAPI_NOCONDITION : Uncontrollable property
EAPI_DATASIZE_EROR : Data size error

(6) Structure
 None

(7) Notes
 Read is disabled except for array element specification.

4-41

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.17 MidSetSendCheckEpcM, MidExtSetSendCheckEpcM
(1) Name
MidSetSendCheckEpcM, MidExtSetSendCheckEpcM

Function for checking a data write into an ECHONET object array
property

(2) Function
 Checks if data is written into array ECHONET property.

(3) Syntax
long MidSetSendCheckEpcM (short id_kind,short id, long eoj_code, short epc_code,

short member_no)
long MidExtSetSendCheckEpcM (short id_kind,short id, long eoj_code, short

epc_code, short member_no, EXT_CONT *extcont)

(4) Explanation [Optional function]
 Checks whether or not data can be written to the array element of member_no of the

ECHONET property specified in id, eoj_code, and epc_code. The function can be
called at any time of data write check. In the case of data write disable, the contents
previously written may remain non-transmitted.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
member_no : [in] Element No. (0 to 0xFFFE)
extcont : [in] Extended communication option

(5) Return value
EAPI_NO_ERROR : Write enable
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal id_kind
EAPI_NOTFOUND_EPC : Property not found
EAPI_NOTSEND : Transmission waiting status
EAPI_NOT_MOBJECT : No array element property
EAPI_NOTFOUND_MNO : Specified array element not found
EAPI_NORESOURCE : Insufficient resources
EAPI_NOCONDITION : Write disable property
EAPI_ETC_NOCONDITION : Property that cannot be written into by the specified

 extended communication feature

4-42

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(6) Structure
typedef struct｛

shoｒt ext_hed; /* Code indicating the type of this structure
0x0001: Secure communication specified */

shoｒt cipher; /* Ciphering (method selection included)
 0x0000: No ciphering

0x0001: DES
 0x0002‐0xFFFF: reserved for future use */

short authent; /* Access restriction level selection
0x0001: Anonymous level
0x0002: User level
0x0003: Service Provider level
0x0004: Maker level
0x0005‐ 0xFFFF: reserved for future use */

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

 Anonymous Level

 User Level

 Service Provider Level 1

 Service Provider Level 2

 Service Provider Level 3

 Service Provider Level 4

 Service Provider Level 5

 Service Provider Level 6

 Service Provider Level 7

 Service Provider Level 8

 Service Provider Level 9

 Service Provider Level 10

 Service Provider Level 11

 Service Provider Level 12

 Service Provider Level 13

 Maker Level

short authentication /* Authentication process selection */
long makerKeyIndex /* Maker key index */
short makerKeysize /* Maker key size */

4-43

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

char makerKey /* Maker key */
} EXT_CONT

(7) Notes
 None

4-44

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.18 MidGetReceiveCheckEpc, MidExtGetReceiveCheckEpc
(1) Name

MidGetReceiveEpcCheck ECHONET property data read check function

(2) Function
 Checks received ECHONET property.

(3) Syntax
long MidGetReceiveEpcCheck (short buff_num, short *id_kind, short *id, l short *EA,

ong *eoj_code, short *epc_code, short *esv_code,short *member_no,
short *out_num)

long MidExtGetReceiveEpcCheck (short buff_num, short *id_kind, short *id, l short
*EA, ong *eoj_code, short *epc_code, short *esv_code,short *member_no,
short *out_num)

(4) Explanation [Optional function]
 MidGetReceiveCheckEpc searches all device objects and lists received EPCs in the

order of reception. This function can be called whenever a reception check is to be
performed.

 MidExtGetReceiveCheckEpc has basically the same capabilities as
MidGetReceiveCheckEpc. However, the former can list received messages for which
secure communication or other extended features are enabled. This function can be
called whenever a reception check is to be performed.
buff_num : [in] Maximum number of listed elements
id_kind : [out] Pointer specifying the save area for the code that indicates the

device ID type
id : [out] Pointer specifying the save area of the device ID (-1: No ID

management)
EA : [out] ECHONET address
eoj_code : [out] EOJ code (Only 3 low-order bytes are used.)
 For checking unanalyzed secure message receptions, -1 is saved.
epc_code : [out] Received object EPC code save area (Only 1 low-order byte

 is used.)
 For checking unanalyzed secure message receptions. -1 is saved.
esv_code : [out] ESV code save area
 For checking unanalyzed secure message receptions, -1 is saved.
member_no : [out] Array element No. save area
 For a non-array element object or for checking unanalyzed secure

message receptions, -1 is saved.
out_num : [out] Listed number save area
extcont : [out] extended communication option

4-45

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(5) Return value
EAPI_NO_ERROR : Success in list-up
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal buff_num (exceeding the maximum listed

number)
(6) Structure
 typedef struct{
 short ext_hed; /* Code indicating the type of the structure.
 0x0001: Use secure communication */
 short cipher; /* Encryption (encryption method)
 0x0000: No encryption
 0x0001: AES-CBC
 0x0002 to 0xFFFF: for future reserved */
 short authent; /* Access control level

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

 Others: for future reserved*/
 Short authentication /* Whether or not to use authentication */
 Long makerKeyIndex /* Manufacturer KeyIndex */
 Short makerKeysize /* Manufacturer Key size */
 Char *makerKey /* Manufacturer Key */

AnonymousLevel

UserLevel

Service ProviderLevel1

Service ProviderLevel2

Service ProviderLevel3

Service ProviderLevel4

Service ProviderLevel5

Service ProviderLevel6

Service ProviderLevel7

Service ProviderLevel8

Service ProviderLevel9

Service ProviderLevel10

Service ProviderLevel11

Service ProviderLevel12

Service ProviderLevel13
ManufacturerLevel

4-46

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 } EXT_CONT
(7) Notes

When buff_num < out_num, received data exists that is not listed. The maximum
listed number is 100 (this number is not specified).

4-47

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.19 MidGetEpcSize
(1) Name
MidGetEpcSize ECHONET property size acquisition function

(2) Function
 Gets data size of ECHONET property.

(3) Syntax
long MidGetEpcSize short id_kind, short id, long eoj_code, short epc_code,

short *size, short *mem_num)

(4) Explanation [Optional function]
 Obtains data size of the ECHONET property specified in id, eoj_code, and epc_code.

This function can be called at any time during acquisition.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
size : [out] Property data size (number of bytes) save area
 In the case of an array element property, the number of bytes of each element is

saved.
mem_num : [out] Array element number save area
 For the normal property, mem_num is fixed at 1.

(5) Return value
EAPI_NO_ERROR : Success in acquisition
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_EPC : Property not found
EAPI_ILLEGAL_PARAM : Illegal id_kind

(6) Structure
 None

(7) Notes
 None

4-48

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.20 MidGetEpcAttrib
(1) Name
MidGetEpcAttrib ECHONET property attribute acquisition function

(2) Function
 Gets property attribute of device object.

(3) Syntax
long MidGetEpcAttrib (short id_kind, short id, long eoj_code, short epc_code,

short *data_type,short *rule, short *data_size)

(4) Explanation [Optional function]
 Each property attribute of the ECHONET object specified in id, eoj_code, and

epc_code is obtained.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
data_type : [out] Data type acquisition area
 APIVAL_DATA_SCHAR : 0 (signed char)
 APIVAL_ DATA_SSHORT : 1 (signed short)
 APIVAL_ DATA_SLONG : 2 (signed long)
 APIVAL_ DATA_UCHAR : 3 (unsigned char)
 APIVAL_ DATA_USHORT : 4 (unsigned short)
 APIVAL_ DATA_ULONG : 5 (unsigned long)
 APIVAL_ DATA_NOTYPE : 6 (No data type)
rule : [out] Access rule acquisition area (All that are processed are ORed

values.)
 APIVAL_RULE_SET : 0x0001 (Set)
 APIVAL_RULE_GET : 0x0002 (Get)
 APIVAL_RULE_SETM : 0x0100 (Element specification setting)
 APIVAL_RULE_GETM : 0x0200 (Element specification getting)
 APIVAL_RULE_ADDM : 0x0400 (Element specification addition request)
 APIVAL_RULE_DELM : 0x0800 (Element specification deletion request)
 APIVAL_RULE_CHECKM : 0x1000 (Element specification existence check

request)
data_size : [out] Data size acquisition area
 In the case of an array element object, each element size is saved.

4-49

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(5) Return value
EAPI_NO_ERROR : Success in acquisition
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_EPC : Property not found
EAPI_ILLEGAL_PARAM : Illegal id_kind

(6) Structure
 None

(7) Notes
 None

4-50

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.21 MidGetEpcMember
(1) Name
MidGetEpcMember ECHONET object array property array element acquisition

function

(2) Function
 Gets array element object information.

(3) Syntax
long MidGetEpcMember (short id_kind, short id, long eoj_code, short epc_code, short

buff_size,short *member_no short *member_num, short *data_size)

(4) Explanation [Optional function]
 Obtains the number of array elements, element data size, and each array element

number of the array element ECHONET property specified in id, eoj_code, and
epc_code according to buff_size. This function can be called at any time during
acquisition.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
buff_size : [in] Number of element numbers that can be saved
member_no : [out] Element No. save area
member_num : [out] Element-number save area
data_size : [out] Element data size

(5) Return value
EAPI_NO_ERROR : Success in acquisition
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_EPC : Property not found
EAPI_NOT_MOBJECT : No array element property
EAPI_ILLEGAL_PARAM : Illegal id_kind

(6) Structure
 None

(7) Notes
 When buff_size < number_num, an array element has not yet been obtained.

4-51

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.22 MidCreateNode
(1) Name
MidCreateNode Control device additional creation function

(2) Function
 Additionally creates another device to be controlled by the ECHONET

Communication Middleware.

(3) Syntax
long MidCreateNode(short ea_code, short *node_id)

(4) Explanation [Optional function]
 Creates another new device using the specified EA code (only data operations on the

self-node). A device ID that is not a duplicate of any existing device is automatically
given to the ECHONET Communication Middleware.
ea_code : [in] Setting ECHONET address code
node_id : [out] Created device ID save area

(5) Return value
EAPI_NO_ERROR : Success in creation
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NORESOURCE : Insufficient resources
EAPI_EXIST_NODE : Device with a specified EA exists

(6) Structure
 None

(7) Notes
 None

4-52

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.23 MidCreateObj
(1) Name
MidCreateObj ECHONET object additional creation function

(2) Function
 Creates additional ECHONET object.

(3) Syntax
long MidCreateObj (short node_id, long eoj_code,)

(4) Explanation [Optional function]
 Creates an ECHONET object specified in node_id and eoj_code (only data operations

on the self-node). The specified device must already exist.
 This function can be called at any time during ECHONET object creation.

node_id : [in] Device ID
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)

(5) Return value
EAPI_NO_ERROR : Success in creation
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NORESOURCE : Insufficient resources
EAPI_EXIST_OBJ : Specified object exists
EAPI_NOTFOUND_NODE : Specified control device not found

(6) Structure
 None

(7) Notes
 None

4-53

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.24 MidCreateEpc, MidCreateExtEpc
(1) Name
MidCreateEpc, MidCreateExtEpc

Non-array ECHONET property additional creation function

(2) Function
 Creates an additional ECHONET property.

(3) Syntax
long MidCreateEpc (short node_id, long eoj_code, short epc_code, short data_type,

short rule, short anno, short data_size)
long MidCreateExtEpc (short node_id, long eoj_code, short epc_code, short

data_type, short rule, short anno, short data_size, EXT_EPC *extepc)

(4) Explanation [Optional function]
 MidCreateEpc creates the ECHONET property specified by node_id, eoj_code, and

epc_code in a specified device and specified ECHONET object. The specified device
and specified object must exist. This function can be called whenever the ECHONET
property is to be created.

 MidCreateExtEpc has basically the same capabilities as MidCreateEpc. However, the
former function sets extended property information.
node_id : [in] Device ID
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
data_type : [in] Data type
 APIVAL_DATA_SCHAR : 0 (signed char)
 APIVAL_ DATA_SSHORT : 1 (signed short)
 APIVAL_ DATA_SLONG : 2 (signed long)
 APIVAL_ DATA_UCHAR : 3 (unsigned char)
 APIVAL_ DATA_USHORT : 4 (unsigned short)
 APIVAL_ DATA_ULONG : 5 (unsigned long)
 APIVAL_ DATA_NOTYPE : 6 (No data type)
rule : [in] Access rule (Of the following rules, some that are processed are

ORed.)
 APIVAL_RULE_SET : 0x0001 (Set)
 APIVAL_RULE_GET : 0x0002 (Get)
 APIVAL_RULE_ANNO : 0x0040 (Anno)
anno : [in] Announcement/non-announcement at state change (Valid for

the self-device.)
 APIVAL_ANNO_ON : 1 (Announcement)

4-54

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 APIVAL_ANNO_OFF : 0 (No announcement)
data_size : [in] Data area size (number of bytes)
extepc : [in] Extended property information setup area for secure

communication or similar feature
(5) Return value

EAPI_NO_ERROR : Success in acquisition
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NORESOURCE : Insufficient resources
EAPI_EXIST_EPC : Property exists
EAPI_NOTFOUND_NODE : Control device not found
EAPI_NOTFOUND_OBJ : Control object not found
EAPI_ILLEGAL_PARAM : Illegal data_type, rule, anno, or data size

(6) Structure
typedef struct｛

short keykinds; /* Access restriction level for Set service */
short keykindg; /* Access restriction level for Get service */
short keykinda; /* Access restriction level for Anno service */

} EXT_EPC
The access restriction level shall be the OR of the following levels to be specified:
 APIVAL_ACCESS_ANO : 0x01（Anonymous level）
 APIVAL_ACCESS_USER : 0x02（User level）
 APIVAL_ACCESS_SP : 0x03（Service Provider level）
 APIVAL_ACCESS_MAKER : 0x04（Maker level）

4-55

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

 Anonymous Level

 User Level

 Service Provider Level 1

 Service Provider Level 2

 Service Provider Level 3

 Service Provider Level 4

 Service Provider Level 5

 Service Provider Level 6

 Service Provider Level 7

 Service Provider Level 8

 Service Provider Level 9

 Service Provider Level 10

 Service Provider Level 11

 Service Provider Level 12

 Service Provider Level 13

 Maker Level

(7) Notes
 Addition of array ECHONET properties is not possible.

4-56

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.25 MidCreateEpcM, MidCreateExtEpcM
(1) Name
MidCreateEpcM, MidCreateExtEpcM

Array ECHONET property additional creation function

(2) Function
 Creates an array ECHONET property.

(3) Syntax
long MidCreateEpcM (short node_id, long eoj_code, short epc_code, short data_type,

short rule, short anno, short data_size, short member_no)
long MidCreateExtEpcM (short node_id, long eoj_code, short epc_code, short

data_type, short rule, short anno, short data_size, short member_no,
EXT_EPC *extepc)

(4) Explanation [Optional function]
 MidCreateEpcM creates the one-element array element ECHONET property specified

by node_id, eoj_code, and epc_code in a specified device and specified object. The
specified device and specified object must exist. This function can be called at any
time when an array element property is to be created.

 MidCreateExtEpcM has basically the same capabilities as MidCreateEpcM. However,
the former function sets extended property information.
node_id : [in] Device ID
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
data_type : [in] Data type
 APIVAL_DATA_SCHAR : 0 (signed char)
 APIVAL_ DATA_SSHORT : 1 (signed short)
 APIVAL_ DATA_SLONG : 2 (signed long)
 APIVAL_ DATA_UCHAR : 3 (unsigned char)
 APIVAL_ DATA_USHORT : 4 (unsigned short)
 APIVAL_ DATA_ULONG : 5 (unsigned long)
 APIVAL_ DATA_NOTYPE : 6 (Byte array)
rule : [in] Access rule (Of the following rules, some that are processed are

ORed.)
 APIVAL_RULE_SETM : 0x0100 (Element specification setting)
 APIVAL_RULE_GETM : 0x0200 (Element specification getting)
 APIVAL_RULE_ADDM : 0x0400 (Element specification addition request)
 APIVAL_RULE_DELM : 0x0800 (Element specification deletion request)
 APIVAL_RULE_CHECKM : 0x1000 (Element specification existence check

request)
 APIVAL_RULE_ADDMS : 0x2000 (Element specification addition request)

4-57

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 APIVAL_RULE_ANNOM : 0x4000 (Element specification notification
request)

anno : [in] Announcement/non-announcement at state change (Valid for
the self-device.)

 APIVAL_ANNO_ON : 1 (Announcement)
 APIVAL_ANNO_OFF : 0 (No announcement)
data_size : [in] Element size (number of bytes)
member_no : [in] Creation element No. (0 to 0xFFFE)

(5) Return value
EAPI_NO_ERROR : Success in acquisition
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NORESOURCE : Insufficient resources
EAPI_EXIST_EPC : Property exists
EAPI_NOTFOUND_NODE : Control device not found
EAPI_NOTFOUND_OBJ : Control object not found
EAPI_ILLEGAL_PARAM : Illegal data_type, rule, anno, data_size, or

member_no

(6) Structure
typedef struct｛

shot ext_size; /* Size of this structure; 0x0E during Version 2.10
use */

shot keykindsm; /* Access restriction level for SetM service */
short keykindgm; /* Access restriction level for GetM service */
short keykindadm; /* Access restriction level for AddM service */
shot keykinddm; /* Access restriction level for DelM service */
short keykindcm; /* Access restriction level for CheckM service */
short keykindadms; /* Access restriction level for AddMS service */
short keykindam; /* Access restriction level for AnnoM service */

} EXT_EPC
The access restriction level shall be the OR of the following levels to be specified:
 APIVAL_ACCESS_ANO : 0x01（Anonymous level）
 APIVAL_ACCESS_USER : 0x02（User level）
 APIVAL_ACCESS_SP : 0x03（Service Provider level）
 APIVAL_ACCESS_MAKER : 0x04（Maker level）

4-58

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

 Anonymous Level

 User Level

 Service Provider Level 1

 Service Provider Level 2

 Service Provider Level 3

 Service Provider Level 4

 Service Provider Level 5

 Service Provider Level 6

 Service Provider Level 7

 Service Provider Level 8

 Service Provider Level 9

 Service Provider Level 10

 Service Provider Level 11

 Service Provider Level 12

 Service Provider Level 13

 Maker Level

(7) Notes
 Others than the array ECHONET property cannot be created.

4-59

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.26 MidAddEpcMember
(1) Name
MidAddEpcMember Array ECHONET property array element addition (element No.

specification) function

(2) Function
 Adds array element to array property by specifying an element No.

(3) Syntax
long MidAddEpcMember (short node_id, long eoj_code, short epc_code,

short member_no)

(4) Explanation [Optional function]
 Adds the array element of member_no to the ECHONET property specified in

node_id, eoj_code, and epc_code. The specified ECHONET property must already
exist.
node_id : [in] Device ID
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
member_no : [in] Element No. (0 to 0xFFFE)

(5) Return value
EAPI_NO_ERROR : Success in addition
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_NODE : Control device not found
EAPI_NOTFOUND_OBJ : Control object not found
EAPI_NOTFOUND_EPC : Control property not found
EAPI_NORESOURCE : Insufficient resources or total number of elements

exceeds 256
EAPI_NOTMEMBER_EPC : No array element property
EAPI_EXIST_MEMBER : Specified array element No. exists

(6) Structure
 None

(7) Notes
 None

4-60

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.27 MidAddEpcMemberS
(1) Name
MidAddEpcMemberS Array ECHONET property array element addition (no element

No. specification) function

(2) Function
 Adds an array element to the array property without specifying an element No.

(3) Syntax
long MidAddEpcMemberS (short node_id, long eoj_code, short epc_code,

short *member_no)

(4) Explanation [Optional function]
 Adds an array element to the ECHONET property specified in node_id, eoj_code,

epc_code. Automatically assigns an array element number that is not a duplicate of
any existing array element. The specified ECHONET property must exist.
node_id : [in] Device ID
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
member_no : [out] Element No. save area

(5) Return value
EAPI_NO_ERROR : Success in addition
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_NODE : Control device not found
EAPI_NOTFOUND_OBJ : Control object not found
EAPI_NOTFOUND_EPC : Control property not found
EAPI_NORESOURCE : Insufficient resources or total number of elements

exceeds 256
EAPI_NOT_MOBJECT : No array element property

(6) Structure
 None

(7) Notes
 None

4-61

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.28 MidDeleteNode
(1) Name
MidDeleteNode Control device deletion function

(2) Function
 Deletes another device under control of ECHONET Communication Middleware.

(3) Syntax
ong MidDeleteNode (short node_id)

(4) Explanation [Optional function]
 Deletes another control device specified in node_id. This function can be called at any

time during deletion.
node_id : [in] Device ID

(5) Return value
EAPI_NO_ERROR : Success in deletion
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_NODE : Another specified control device not found

(6) Structure
 None

(7) Notes
 When a device is deleted, all the objects and properties existing in this device will also

be deleted.

4-62

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.29 MidDeleteObj
(1) Name
MidDeleteObj ECHONET object deletion function

(2) Function
 Deletes ECHONET object

(3) Syntax
long MidDeleteObj (short node_id, long eoj_code)

(4) Explanation [Optional function]
 Deletes an ECHONET object specified in node_id and eoj_code.
 This function can be called at any time during ECHONET object deletion.

node_id : [in] Device ID
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)

(5) Return value
EAPI_NO_ERROR : Success in deletion
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NODELETE : Deletion impossible
EAPI_NOTFOUND_OBJ : Specified object not found

(6) Structure
 None

(7) Notes
 When an object is deleted, all of the object’s properties are also deleted. Consequently,

if a property does not exist in the specified device, the device instance is not deleted.
To delete the device instance, call DeleteNode.

4-63

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.30 MidDeleteEpc
(1) Name
MidDeleteEpc ECHONET property deletion function

(2) Function
 Deletes ECHONET property.

(3) Syntax
long MidDeleteEpc (short node_id, long eoj_code, short epc_code)

(4) Explanation [Optional function]
 Deletes the ECHONET property specified in node_id, eoj_code, and epc_code. This

function can be called at any time during ECHONET property deletion.
node_id : [in] Device ID
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)

(5) Return value
EAPI_NO_ERROR : Success in deletion
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NODELETE : Deletion impossible
EAPI_NOTFOUND_EPC : Specified object not found

(6) Structure
 None

(7) Notes
 When the specified property is an array element property, all array elements are

deleted. Consequently, when a property exists in the specified object, the object itself
will not be deleted. To delete the object, call DeleteObj.

4-64

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.31 MidDeleteEpcM
(1) Name
MidDeleteEpcM Array ECHONET property specified element delete function

(2) Function
 Deletes specified element of array ECHONET property.

(3) Syntax
long MidDeleteEpcM (short node_id, long eoj_code, short epc_code, short

member_no)

(4) Explanation [Optional function]
 Deletes the array element specified in member_no of the ECHONET property

specified in node_id, eoj_code, and epc_code. This function can be called at any time
during array element invalidation.
node_id : [in] Device ID
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)
member_no : [in] Element No. (0 to 0xFFFE)

(5) Return value
EAPI_NO_ERROR : Success in setting
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_EPC : Property not found
EAPI_NOT_MOBJECT : No array element property
EAPI_NOTFOUND_MNO : Specified array element not found
EAPI_NODELETE : Array element that can be deleted

(6) Structure
 None

(7) Notes
 Even if all array elements of the specified property have been deleted using this

function, the property itself will not be deleted. To delete the property, call DeleteEpc.

4-65

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.32 MidGetState
(1) Name
MidGetState ECHONET Communications Processing Block status acquisition

function

(2) Function
 Gets current status of communication middleware.

(3) Syntax
long MidGetState (short *state)

(4) Explanation [Optional function]
 Obtains current status of communication middleware.

state : [out] Communication middleware status save area
 MID_STS_STOP : 0 (Stop status)
 MID_STS_INIT : 1 (Initializing status or completion of initialize

processing)
 MID_STS_RUN : 2 (Normal processing status)
 MID_STS_APL_ERR : 3 (Application error)
 MID_STS_PRO_ERR : 4 (Protocol difference absorption processing block

error)
 MID_STS_LOW_ERR : 5 (Low-order communications software error)

(5) Return value
EAPI_NO_ERROR : Success in acquisition
EAPI_NOTOPEN : Non-start (Session not opened)

(6) Structure
 None

(7) Notes
 None

4-66

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.33 MidSetRecvTargetList
(1) Name
MidSetRecvTargetList Data receipt notice target list valid/invalid setting function

(2) Function
 Sets data receipt notice target list to valid/invalid.

(3) Syntax
long MidSetRecvTargetList (short setup)

(4) Explanation [Optional function]
 Sets the data receipt notice target Eps list to valid or invalid. When set to valid, only

the receive data for the ECHONET property specified by AddTargetList will be a
target of MidGetReceiveEPC and MidGetReceiveCheckEPC. When set to invalid, all
receive data is a target of MidGetReceiveEPC and MidGetReceiveCheckEPC.

Setup : [in] Valid or invalid (0: Invalid, 1: Valid)

(5) Return value
EAPI_NOTOPEN : Non-start (Session not opened)

(6) Structure
 None

(7) Notes
 Selecting validity in valid status or invalidity in invalid status will not result in an

error.

4-67

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.34 MidAddRecvTargetList
(1) Name
MidAddRecvTargetList Data receipt notice target list addition function

(2) Function
 Adds to data receipt notice target list.

(3) Syntax
long MidAddRecvTargetList (short id_kind, short id, long eoj_code, short epc_code)

(4) Explanation [Optional function]
 Sets Epc that is a target of the data receipt notice. After setting, the receive data for the

ECHONET property specified in id, eoj_code, and epc_code becomes a target of
MidGetReceiveEPC and MidGetReceiveCheckEPC.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)

(5) Return value
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_OBJECT : Property not found
EAPI_ILLEGAL_PARAM : Illegal id_kind

(6) Structure
 None

(7) Notes
 Eps cannot be set for each array element.
 Specifying Epc that is a current receipt target will not result in an error.

4-68

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.35 MidDeleteRecvTargetList
(1) Name

MidDeleteRecvTargetList Data receipt notice target list deletion function

(2) Function
 Deletes data receipt notice target list.

(3) Syntax
long MidDeleteRecvTargetList (short id_kind, short id, long eoj_code, short

epc_code)

(4) Explanation [Optional function]
 Deletes the specified Eps from the receipt target notice.
 After deletion, the receive data for the ECHONET property specified in id, eoj_code,

and epc_code is put out of the MidGetReceiveEPC and MidGetReceiveCheckEPC.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used.)
epc_code : [in] EPC code (Only 1 low-order byte is used.)

(5) Return value
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_NOTFOUND_OBJECT : Property not found
EAPI_ILLEGAL_PARAM : Illegal id_kind

(6) Structure
 None

(7) Notes
 Eps cannot be set for each array element.
 Specifying Epc that is a current receipt target will not result in an error.

4-69

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.36 MidGetRecvTargetList
(1) Name
MidGetRecvTargetList Data receipt notice target list acquisition function

(2) Function
 Gets data receipt notice target list.

(3) Syntax
long MidGetRecvTargetList (short buff_num, short *setup, short *node_id, long

*eoj_code, short *epc_code)

(4) Explanation [Optional function]
 Obtains the Epc list that is a data receipt notice target according to buff_num.

buff_num : [in] Number of list buffers
setup : [out] List valid/invalid setting (0: Invalid, 1: Valid)
node_id_ : [out] Device ID list save area
eoj_code : [out] EOJ code list save area (Only 3 low-order bytes are used.)
epc_code : [out] EPC code list save area (Only 1 low-order byte is used.)
data_num : [out] Number of data

(5) Return value
EAPI_NOTOPEN : Non-start (Session not opened)

(6) Structure
 None

(7) Notes
 When buffnum < data_num, this signifies that there is a receipt target Epc that is not

listed.

4-70

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.37 MidStart
(1) Name
MidStart ECHONET Communications Processing Block initialization function

(2) Function
 Starts communication middleware to perform a warm start.

(3) Syntax
long MidStart (short mid_no, const char* mid_name, void *p_init, short dev_num, void

*l_init)

(4) Explanation [Optional function]
 Starts the ECHONET Communications Processing Block and loads the Protocol

Difference Absorption Processing Block and lower-layer communication software
while retaining the ECHONET address of the ECHONET Communications
Processing Block of the communication middleware specified by mid_no. This
function does not open a session.
mid_no : [in] Communication middleware No.
mid_name : [in] Communication middleware process name
p_init : [in] Protocol difference absorption processing block initialization data
dev_num : [in] Number of low-order communication modules mounted
l_init : [in] Low-order communication module initialization data

 Data is prepared according to dev_num.

(5) Return value
EAPI_NO_ERROR : Success in initialization
EAPI_MID_ERROR : Failure in ECHONET Communications Processing

Block initialization
EAPI_PRO_ERROR : Failure in Protocol Difference Absorption Block

initialization
EAPI_LOW_ ERROR : Failure in lower-layer communication software

initialization
EAPI_ILLEGAL_PARAM : Illegal number of low-order communication

modules mounted

(6) Structure
None

(7) Notes
 For void*p_init and void*l_init, mounting specifications are to be complied with.

4-71

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.38 MidReset
(1) Name
MidReset ECHONET Communications Processing Block initialization function

(2) Function
 Starts and initializes communication middleware and performs cold start (3).

(3) Syntax
long MidReset (short mid_no, const char* mid_name, void *p_init, short dev_num,

void *l_init)

(4) Explanation [Optional function]
 Discards the ECHONET address of the ECHONET Communications Processing

Block of the communication middleware specified by mid_no, starts the ECHONET
Communications Processing Block, and loads the Protocol Difference Absorption
Processing Block and lower-layer communication software. This function does not
open a session.
mid_no : [in] Communication middleware No.
mid_name : [in] Communication middleware process name
p_init : [in] Protocol difference absorption processing block initialization data
dev_num : [in] Number of low-order communication modules mounted
l_init : [in] Low-order communication module initialization data

 Data is prepared according to dev_num.

(5) Return value
EAPI_NO_ERROR : Success in initialization
EAPI_MID_ERROR : Failure in ECHONET Communications Processing

Block initialization
EAPI_PRO_ERROR : Failure in Protocol Difference Absorption Block

initialization
EAPI_LOW_ ERROR : Failure in lower-layer communication software

initialization
EAPI_ILLEGAL_PARAM : Illegal number of low-order communication

modules mounted

(6) Structure
None

(7) Notes
 For void*p_init and void*l_init, mounting specifications are to be complied with.

4-72

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.39 Midlnit
(1) Name
MidInit ECHONET Communications Processing Block initialization function

(2) Function
 Starts and initializes communication middleware and performs cold start (2).

(3) Syntax
long MidInit (short mid_no, const char* mid_name, void *p_init, short dev_num, void

*l_init)

(4) Explanation
 Initializes and starts the ECHONET Communications Processing Block of the

communication middleware specified by mid_no and loads and initializes the Protocol
Difference Absorption Processing Block and lower-layer communication software.
This function does not open a session.
mid_no : [in] Communication middleware No.
mid_name : [in] Communication middleware process name
p_init : [in] Protocol difference absorption processing block initialization data
dev_num : [in] Number of low-order communication modules mounted
l_init : [in] Low-order communication module initialization data

 Data is prepared according to dev_num.

(5) Return value
EAPI_NO_ERROR : Success in initialization
EAPI_MID_ERROR : Failure in ECHONET Communications Processing

Block initialization
EAPI_PRO_ERROR : Failure in Protocol Difference Absorption Block

initialization
EAPI_LOW_ ERROR : Failure in lower-layer communication software

initialization
EAPI_ILLEGAL_PARAM : Illegal number of low-order communication

modules mounted
(6) Structure

None

(7) Notes
 For void*p_init and void*l_init, mounting specifications are to be complied with.

4-73

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.40 MidlnitAll
(1) Name
MidInitAll ECHONET Communications Processing Block initialization function

(2) Function
 Starts and initializes communication middleware and performs cold start (1).

(3) Syntax
long MidInitAll (short mid_no, const char* mid_name, void *p_init, short dev_num,

void *l_init)

(4) Explanation [Optional function]
 Initializes and starts the ECHONET Communications Processing Block of the

communication middleware specified by mid_no and loads and initializes the Protocol
Difference Absorption Processing Block and lower-layer communication software.
This function does not open a session.
mid_no : [in] Communication middleware No.
mid_name : [in] Communication middleware process name
p_init : [in] Protocol difference absorption processing block initialization data
dev_num : [in] Number of low-order communication modules mounted
l_init : [in] Low-order communication module initialization data

 Data is prepared according to dev_num.

(5) Return value
EAPI_NO_ERROR : Success in initialization
EAPI_MID_ERROR : Failure in ECHONET Communications Processing

Block initialization
EAPI_PRO_ERROR : Failure in Protocol Difference Absorption Block

initialization
EAPI_LOW_ ERROR : Failure in lower-layer communication software

initialization
EAPI_ILLEGAL_PARAM : Illegal number of low-order communication

modules mounted
(6) Structure

None

(7) Notes
 For void*p_init and void*l_init, mounting specifications are to be complied with.

4-74

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.41 MidRequestRun
(1) Name
MidRequestRun ECHONET Communication Middleware operation start function

(2) Function
 Requests operation start of communication middleware.

(3) Syntax
long MidRequestRun (void)

(4) Explanation
 In the waiting status after completion of MidInit, starts the operations of the

ECHONET Communications Processing Block, Protocol Difference Absorption
Processing Block, and low-order communication module of the communication
middleware.

(5) Return value
EAPI_NO_ERROR : Success in start
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_MID_ERROR : ECHONET Communications Processing Block error
EAPI_PRO_ERROR : Protocol difference absorption processing block error
EAPI_LOW_ ERROR : Low-order communications software error

(6) Notes
 This function starts the operation of the ECHONET Communications Processing

Block of communication middleware.

4-75

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.42 MidSuspend
(1) Name
MidSuspend ECHONET Communication Middleware suspension request function

(2) Function
 Request to suspend communication middleware.

(3) Syntax
long MidSuspend (void)

(4) Explanation [Optional function]
 Suspends all operations under ECHONET Communications Processing Block.
 Does not clear data waiting for transmission or data waiting for reception.

(5) Return value
EAPI_NO_ERROR : Success in stop
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_MID_ERROR : ECHONET Communications Processing Block error
EAPI_PRO_ERROR : Protocol difference absorption processing block error
EAPI_LOW_ ERROR : Low-order communications software error

(6) Notes
 The operation is restarted by the MidWakeUp function.

4-76

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.43 MidWakeUp
(1) Name
MidWakeUp ECHONET Communication Middleware operation restart request

function
(2) Function
 Request to restart operation of communication middleware.

(3) Syntax
long MidWakeUp (void)

(4) Explanation [Optional function]
 Restarts all operations under the ECHONET Communications Processing Block.

(5) Return value
EAPI_NO_ERROR : Success in restart
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_MID_ERROR : ECHONET Communications Processing Block error
EAPI_PRO_ERROR : Protocol difference absorption processing block error
EAPI_LOW_ ERROR : Low-order communications software error

(6) Notes
 This function is valid only when operation is stopped by MidSuspend.

4-77

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.44 MidSetSendMulti, MidExtSetSendMulti
(1) Name
MidSetSendMulti, MidExtSetSendMulti

Function for requesting the writing of data into ECHONET object
non-array properties and the transmission of a complex message

(2) Function
 Writes data into non-array ECHONET properties and transmits a service as a complex

message.

(3) Syntax
long MidSetSendMulti (short id_kind, short id, long seoj_code, long deoj_code, short

esv_code, short opc_code, const char * pdc_code, const char*
epcedt_code)

long MidExtSetSendMulti (short id_kind, short id, long seoj_code, long deoj_code,
short esv_code, short opc_code, const char * pdc_code, const char*
epcedt_code, EXT_CONT *extcont)

(4) Explanation [Optional function]
 MidSetSendMulti writes data into ECHONET properties specified by id, eoj_code,

and epc_code and transmits the service specified by esv_code.
 MidExtSetSendMulti has basically the same capabilities as MidSetSendMulti.

However, the former function can exercise the secure communication feature.
 These functions can be called whenever data are to be written.
id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
 APIVAL_BROAD_KIND : 2 (Broadcast)
Id : [in] Device ID, ECHONET address, or broadcast type
seoj_code : [in] SEOJ code (Only 3 low-order bytes are used.)
 When SEOJ does not exist, set to -1.
deoj_code : [in] DEOJ code (Only 3 low-order bytes are used.)
 When WEOJ does not exist, set to -1.
esv_code : [in] ESV code

 ESV_SetI : 0x60 (Request for writing a property value not requiring
a response)

 ESV_SetC : 0x61 (Request for writing a property value requiring a
response)

 ESV_Get : 0x62 (Request for reading a property value)

4-78

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 ESV_Inf_Req : 0x63 (Request for notifying a property value)
 ESV_INF : 0x73 (Notice of a property value)

opc_code : [in] Set the EPC element count.
pdc_code : [in] Pointer to the beginning of the array into which EPC

codes and EDT code size information are to be entered.
The number of elements is specified by the opc_code
value.

epcedt_code : [in] Pointer to the beginning of the array into which an
EPC code and EDT code are to be entered.
The number of elements is specified by the opc_code
value. (Adds “Secure”.)

extcont : [in] Extended communication option

(5) Return value

EAPI_NO_ERROR : Success in setting
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal ID_kind or esv_code
EAPI_NOTFOUND_EPC : Property not found
EAPI_DATASIZE_EROR : Illegal write data size
EAPI_NORESOURCE : Insufficient resources
EAPI_NOCONDITION : Uncontrollable property
EAPI_MEMBER_EPC : Array element property
EAPI_NOTSEND : Data not sent
EAPI_TIMEPOUT : Communication timeout (in the synchronous

communication mode)
EAPI_ETC_NOCONDITION : Property that cannot be written into by the

specified extended communication feature

(6) Structure
typedef struct｛

shoｒt ext_hed; /* Code indicating the type of this structure
0x0001: Secure communication specified */

shoｒt cipher; /* Ciphering (method selection included)
 0x0000: No ciphering

0x0001: DES
 0x0002‐0xFFFF: reserved for future use */

short authent; /* Access restriction level selection
0x0001: Anonymous level
0x0002: User level
0x0003: Service Provider level
0x0004: Maker level

4-79

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

0x0005‐ 0xFFFF: reserved for future use */
short authentication /* Authentication process selection */
long makerKeyIndex /* Maker key index */
short makerKeysize /* Maker key size */

char makerKey /* Maker key storage area */
} EXT_CONT

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

 Anonymous Level

 User Level

 Service Provider Level 1

 Service Provider Level 2

 Service Provider Level 3

 Service Provider Level 4

 Service Provider Level 5

 Service Provider Level 6

 Service Provider Level 7

 Service Provider Level 8

 Service Provider Level 9

 Service Provider Level 10

 Service Provider Level 11

 Service Provider Level 12

 Service Provider Level 13

 Maker Level

(7) Notes
 None

4-80

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.45 MidGetReceiveEpcMulti
(1) Name

MidGetReceiveEpcMulti
Function for requesting the reading of data from ECHONET object
non-array properties.

(2) Function
Reads data from non-array ECHONET properties related to a reception.

(3) Syntax
long MidGetReceiveEpcMulti (short id_kind, short id, long eoj_code, short epc_code,

short buff_size, short esv_code, short opc_code, const char * pdc_code,
const char* epcedt_code, long *eoj_code2)

(4) Explanation
 Reads received data about a request for writing data into ECHONET properties of the

object specified by id and eoj_code. This function can be called whenever the received
data is to be read.

id_kind : [in] ID type
 APIVAL_NODE_KIND : 0 (Device ID)
 APIVAL_EA_KIND : 1 (ECHONET address)
Id : [in] Device ID or ECHONET address
eoj_code : [in] EOJ code (Only 3 low-order bytes are used. –1 in the absence of the code)
seoj_code : [in] SEOJ code (Only 3 low-order bytes are used.)
 When SEOJ does not exist, set to -1.
deoj_code : [in] DEOJ code (Only 3 low-order bytes are used.)
 When WEOJ does not exist, set to -1.
buff_size : [in] Area size
esv_code : [in] ESV code

 ESV_SetI : 0x60 (Request for writing a property value not requiring
a response)

 ESV_SetC : 0x61 (Request for writing a property value requiring a
response)

 ESV_Get : 0x62 (Request for reading a property value)
 ESV_Inf_Req : 0x63 (Request for notifying a property value)
 ESV_INF : 0x73 (Notice of a property value)

opc_code : [in] Set the EPC element count.
pdc_code : [in] Pointer to the beginning of the array into which EPC

codes and EDT code size information are to be entered.
The number of elements is specified by the opc_code

4-81

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

value.
epcedt_code : [in] Pointer to the beginning of the array into which an

EPC code and EDT code are to be entered.
eoj_code2: [out] SEOJ or DEOJ communication code (when this eoj_code2 exists,
eoj_code functions as the DEOJ communication code when eoj_code specifies the
EOJ of another node and functions as the SEOJ communication code when eoj_code
specifies the EOJ of NodeID of its own.)

(5) Return value
EAPI_NO_ERROR : Read operation successful
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_ILLEGAL_PARAM : Illegal id_kind
EAPI_NOTFOUND_EPC : Property not found
EAPI_NORECEIVE : Received data not found
EAPI_NOTSEND : Waiting for a transmission
EAPI_MEMBER_EPC : Array element property
EAPI_DATASIZE_EROR : Illegal data size
EAPI_NORESOURCE : Resources insufficient

(6) Structure
 None

(7) Notes
 Array element specifications cannot be read. Messages for which the secure

communication feature is activated will be reported to the application by
MidExtGetReceiveEpc even when they are of complex type.

4-82

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.46 MidSetSecureContVal
(1) Name
MidSetSecureContVal Secure communication serial key setup function

(2) Function
 Sets the serial key that is required for initial shared key setup for secure

communication.

(3) Syntax
long MidSetSecureContVal (short serial_len, unsigned char *serial_key)

(4) Explanation [Optional function]
 Specifies the secure communication settings.

Serial_len : [in] Serial key data size
serial_key : [in] Pointer to the beginning of serial key data

(5) Return value
EAPI_NO_ERROR : Setup successful
EAPI_NOTOPEN : Inactive (session not open)
EAPI_DATASIZE_EROR : Write data size illegal
EAPI_NORESOURCE : Resources insufficient

(6) Structure
None

(7) Notes
 None

4-83

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.47 MidStop
(1) Name
MidStop ECHONET Communication Middleware communication stop request

function

(2) Function
 Requests that Communication Middleware switch to communication stop status.
(3) Syntax

long MidStop(void)

(4) Explanation [Optional function]
Places components below ECHONET Communications Processing Block into
communication stop state.
Messages waiting to be sent or received will be discarded.

(5) Return value
EAPI_NO_ERROR : Stop successful
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_MID_ERROR : ECHONET Communications Processing Block error
EAPI_PRO_ERROR : Protocol difference absorption processing block error
EAPI_LOW_ ERROR : Low-order communications software error

(6) Notes

4-84

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.48 MidHalt
(1) Name
MidHalt ECHONET Communication Middleware complete stop request

function
(2) Function
 Requests that Communication Middleware switch to complete stop status.
(3) Syntax

long MidHalt(void)

(4) Explanation [Optional function]
Stop all components below ECHONET Communications Processing Block.

 Messages waiting to be sent or received will be discarded

(5) Return value
EAPI_NO_ERROR : Stop successful
EAPI_NOTOPEN : Non-start (Session not opened)
EAPI_MID_ERROR : ECHONET Communications Processing Block error
EAPI_PRO_ERROR : Protocol difference absorption processing block error
EAPI_LOW_ ERROR : Low-order communications software error

(6) Notes

4-85

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.49 MidGetAddressTableDataSize

(1) Name

MidGetAddressTableDataSize – Lower-layer communication software
address table data size acquisition function

(2) Function

 Acquires the number of lower-layer address table data sets maintained by the
lower-layer communication software.

(3) Syntax

long MidGetAddressTableDataSize (unsigned char device_id, unsigned char
*data_number)

(4) Explanation

The output data includes the pointer to the number of data sets.

device_id : Lower-layer communication software ID information

Power Line Communication Protocol A and D Systems
 0x11 to 0x1F

Specific low electric power radio 0x31 to 0x3F

Extended HBS 0x41 to 0x4F

IrDA_Control 0x51 to 0x5F

LonTalk® 0x61 to 0x6F

BluetoothTM 0x71 to 0x7F

Ethernet 0x81 to 0x8F

IEEE802.11/11b 0x91 to 0x9F

Power Line Communication Protocol C System

 0xA1

data_number : Pointer to the number of address table sets maintained by the
lower-layer address table data

(5) Return value

EAPI_NO_ERROR : Acquisition successful

EAPI_NOTOPEN : Non-start (Session not opened)

4-86

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

EAPI_UNACCEPTABLE : Error indicating the absence of the acquisition/ reception
method

EAPI_MOMENTARY_ERROR : Momentary error

(6) Notes

None

4-87

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.50 MidGetAddressTableData
(1) Name

MidGetAddressTableDataSize – Lower-layer communication software address table
data acquisition function

(2) Function

Acquires the lower-layer address table data maintained by the lower-layer
communication software.

(3) Syntax

long MidGetAddressTableData (unsigned char device_id, unsigned char
*data_number, ADDRESSTABLE *addresstable)

(4) Explanation

The input data (data_number) includes the pointer to the number of address table sets
acquired by MidGetAddressTableDataSize.

The output data includes the number of address table sets actually saved, the
hardware address of each data set, the NodeID and the array data of a structure
comprised of flags indicating that the node is the master router.

device_id : Lower-layer communication software ID information

Power Line Communication Protocol A and D Systems

0x11 to 0x1F

Specific low electric power radio 0x31 to 0x3F

Extended HBS 0x41 to 0x4F

IrDA_Control 0x51 to 0x5F

LonTalk® 0x61 to 0x6F

BluetoothTM 0x71 to 0x7F

Ethernet 0x81 to 0x8F

IEEE802.11/11 0x91～0x9F

Power Line Communication Protocol C System

 0xA1

data_number : Pointer to the number of address table sets maintained by the
lower-layer address table data

4-88

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Addresstable : Hardware addresses maintained by the lower-layer address table data,
NodeID, and the pointer to the start of the array of the address table
structure that contains flags indicating that the node is the master
router.

(5) Return value

EAPI_NO_ERROR : Acquisition successful

EAPI_NOTOPEN : Non-start (Session not opened)

EAPI_UNACCEPTABLE : Error indicating the absence of the
acquisition/reception method

EAPI_MOMENTARY_ERROR : Momentary error

(6) Structure

typedef struct {

 unsigned char hardwareadddresss_size; /*Data size of the hardware address/*

unsigned char hardwareaddress[8]; /*Hardware address. Saved in the low-order
bytes/*

 unsigned char node_id; /*NodeID/*

unsigned char masterrouter_flag; /*ID indicating whether or not the
corresponding node is the master router: 1 for the master router and 0 for
otherwise./*

}ADDRESSTABLE

(7) Notes

Careful attention should be paid to the second argument, data_number, which is used
for both input and output. There is a possibility that the data could be overwritten.

4-89

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.51 MidSetMasterRouterFlag

(1) Name

MidSetMasterRouterFlag – Master router notification function

(2) Function

Requests the communication middleware to notify the lower-layer communication
software of whether or not its own node is the master router.

(3) Syntax

long MidSetMasterRouterFlag (unsigned char device_id)

(4) Explanation

The output data includes the pointer to the number of data sets.

device_id : Lower-layer communication software ID information

Power Line Communication Protocol A and D Systems 0x11 to
0x1F

Specific low electric power radio 0x31 to 0x3F

Extended HBS 0x41 to 0x4F

IrDA_Control 0x51 to 0x5F

LonTalk® 0x61 to 0x6F

BluetoothTM 0x71 to 0x7F

Ethernet 0x81 to 0x8F

IEEE802.11/11b 0x91 to 0x9F

Power Line Communication Protocol C System 0xA1

(5) Return value

EAPI_NO_ERROR : Acquisition successful

EAPI_NOTOPEN : Non-start (Session not opened)

EAPI_UNACCEPTABLE : Error indicating the absence of the
acquisition/reception method

EAPI_MOMENTARY_ERROR: Momentary error

(6) Notes

4-90

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

None

4-91

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.52 MidGetHardwareAddress

(1) Name

MidGetHardwareAddress – Hardware address data acquisition function

(2) Function

Acquires the hardware address data maintained by the lower-layer communication
software.

(3) Syntax

long MidGetHardwareAddress (unsigned char device_id, unsigned char
*hardwareaddress_size, unsigned char *hardwareaddress)

(4) Explanation

The output data includes the hardware address.

device_id : Lower-layer communication software ID information

Power Line Communication Protocol A and D Systems 0x11 to
0x1F

Specific low electric power radio 0x31 to 0x3F

Extended HBS 0x41 to 0x4F

IrDA_Control 0x51 to 0x5F

LonTalk® 0x61 to 0x6F

BluetoothTM 0x71 to 0x7F

Ethernet 0x81 to 0x8F

IEEE802.11/11b 0x91 to 0x9F

Power Line Communication Protocol C System 0xA1

hardwareaddress_size: Pointer to the data size of the hardware address

hardwareaddress: Pointer to the hardware address of its own node

(5) Return value

EAPI_NO_ERROR : Acquisition successful

EAPI_NOTOPEN : Non-start (Session not opened)

EAPI_UNACCEPTABLE : Error indicating the absence of the
acquisition/reception method

4-92

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

EAPI_MOMENTARY_ERROR : Momentary error

(6) Notes

None

4-93

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.53 MidGetReceiveCheckEpcMulti

(1) Name

MidGetReceiveCheckEpcMulti – Decoded message data readout check function

(2) Function

Checks decoded messages received.

(3) Syntax

long MidGetReceiveCheckEpcMulti (short buff_num, short *id, short *EA, long
*eoj_code, short *esv_code, short *out_num)

(4) Explanation [Optional function]

MidGetReceiveCheckEpcMulti lists decoded messages received in order of
reception. The function can be called whenever it is necessary to check messages
received.

buff_num : [in] Maximum number of elements that can be listed

id : [out] Device ID (-1: No ID management)

EA : [out] ECHONET address

eoj_code : [out] EOJ code (Only 3 low-order bytes are used.)

esv_code : [out] ESV code save area

out_num : [out] Listed number save area

(5) Return value

EAPI_NO_ERROR : Listing successful

EAPI_NOTOPEN : Non-start (Communication middleware has not been
initialized.)

EAPI_ILLEGAL_PARAM : Illegal buff_num (buff_num<0) or NULL pointer

(6) Notes

None

4-94

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.54 MidGetDevID

(1) Name

MidGetDevID – Lower-layer communication software installation information
request function

(2) Function

Makes a request for information on the number of lower-layer communication
software applications that can be operated and the lower-layer communication
software ID that indicates the software type.

(3) Syntax

long MidGetDevID (

 unsigned char *device_num /*[OUT] Number of lower-layer communication
software applications that can be operated*/

 unsigned char *device_idset /*[OUT] IDs of lower-layer communication software
applications that can be operated*/

)

(4) Explanation

*device_num : Pointer to the number of lower-layer communication software
applications that can be operated

*device_idset : Pointer to the IDs of lower-layer communication software
applications that can be operated. The information for the number
specified by device_num exists at the position pointed to by the
pointer. The function between the lower-layer communication
software type and the corresponding lower-layer communication
software ID is shown below.

Power Line Communication Protocol A and D Systems 0x11 to 0x1F

Specific low electric power radio 0x31 to 0x3F

Extended HBS 0x41 to 0x4F

IrDA_Control 0x51 to 0x5F

LonTalk® 0x61 to 0x6F

BluetoothTM 0x71 to 0x7F

Ethernet 0x81 to 0x8F

4-95

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

IEEE802.11/11b 0x91 to 0x9F

Power Line Communication Protocol C System 0xA1

(5) Return value

EAPI_NO_ERROR : Setup successful

EAPI_NOTOPEN : Non-start (Session not opened)

EAPI_UNACCEPTABLE : Error indicating the absence of the
acquisition/reception method

EAPI_MOMENTARY_ERROR : Momentary error

(6) Structure

None

(7) Notes/restrictions

It is a prerequisite that this function be called prior to the initialization request
function, MidInit, and the operation start request function, MidRequestRun.

4-96

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

4.3.55 MidGetLastSendError
(1) Name

MidGetLastSendError – Last send error information acquisition function

(2) Function

Acquires the last ECHONET message send error information maintained by the
ECHONET Communication Middleware.

(3) Syntax

long MidGetLastSendError (

 unsigned char *last_err /*[OUT] Last send error information*/

)

(4) Explanation

*last_err Pointer to the last send error information

 0x00: Send successful

 0x01: Send being stopped

 0x02: Send result acquisition timeout

 0x03: Lower-layer communication software internal error

 0x04: Device adapter processing failed

 0x05: Lower-layer communication software buffer full error

 0x06: Lower-layer communication software buffer size error

 0x07: Lower-layer communication software send error

 0x08 to 0xEF: Reserved for future use

 0xFF: No response

(5) Return value

EAPI_NO_ERROR : Acquisition successful

EAPI_NOTOPEN : Non-start (Session not opened)

EAPI_MID_ERROR : ECHONET communication processing block error

(6) Structure

None

4-97

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
4 Level 2 ECHONET Basic API Specifications (For C Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(7) Notes/restrictions

None

5-1

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Chapter 5 Level 2 ECHONET Basic API Specifications
(For JavaTM Language)

5.1 Basic Concept
This chapter provides the basic API specifications for Java language applications. The API
specifications are designed for Java language applications in the centralized controller.
These applications are assumed to have the following characteristics.

- These applications are distributed via a wide area network and loaded into the
centralized controller at each household for operation.
- The centralized controller can be developed by multiple vendors.
- It is desirable that these applications can be run at distribution destinations without
needing to know which vendor developed the centralized controller.

In light of the above, the policy for standardizing this API shall be as follows:
(1) Two types of APIs are to be made available for monitoring and controlling other devices:

one for synchronous request/response transmission and the other for asynchronous
request/response transmission. Either type can be selected depending on the application
program purpose and the programmer’s skill.

(2) Application programmers are expected to write the processes for responding to service
requests from other devices.

(3) Basically, no optional functions are offered. When an application is intended to use an
optional function of the ECHONET Communication Middleware, the program for such
an application needs to be written on the presumption that the optional function is not
always supported.

(4) The ECHONET Communication Middleware offers an environment in which
applications running at a higher layer can operate independently. In accordance with the
idea of object orientation, applications independently manage the data they retain. If, for
instance, applications A and B are installed on the same node and the ECHONET
Communication Middleware acquires the other device’s data for application A, the value
of such data is not always equal to that of the data obtained by application B.

(5) The ECHONET Communication Middleware does not internally store the status of the
other devices, because it is assumed that the applications written in Java language are
installed on the controller and used while retaining the status at an application level as
well. In addition, it is assumed that efficiency rises when applications are allowed to act
as they want to.

5-2

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(6) The name service for managing the information about all ECHONET devices within a
domain, access restriction service, network traffic control service, and other advanced
services are to be provided by the Service Middleware, which is at a higher layer than
this API. This matter will be further studied with a view toward establishing a standard.

(7) Profile object and communication definition object programs are to be written by
developers who actually develop communication middleware products. The API for
initialization and the API for accessing properties that are not accessible via a network
will not be stipulated. These are an issue for mounting.

(8) The Version 2.00 specifications have been altered as indicated below to provide an API
for secure communication:
- Structures for secure communication are added to all associated methods. Further,

possible exceptions have been newly added.
- The ECHONET secure communication option class “EN_SecureOpt” has been

newly defined to provide a means of specifying the secure communication feature.
- A constant definition for secure communication is added to the EN_Const class.

(9) The complex message API is such that message complexness is perceived by an
application on the requesting side but is not perceived by an application on the
responding side.

5-3

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.2 API Configuration
5.2.1 API classes

The API consists of the following classes:
ON_Object class ECHONET object management
EN_Node class Node/event management
EN_Property class Property wrapper
EN_Packet class Event wrapper
EN_EventListener interface Event listener
EN_Exception exception class Exception expression class
EN_Const interface Definitions of constants for use with API
EN_SecureOpt class Secure communication option specification

5.2.2 Relationship between classes

Figure 5.1 shows the relationships between classes. The ECHONET nodes are managed
according to EN_Node class. Upon receipt of an event (message reception), a user
application method is called. EN_Object provides an abstract of an ECHONET object.
When an application calls a property access method in relation to an EN_Object, a
message is actually issued The received message is managed according to EN_Property
class, which represents the property section (EDT), and EN_Packet class, which represents
a portion other than the property section. Each class is explained below. Note that Fig. 5.1
does not stipulate installation of the ECHONET Communication Middleware.

Application

EN_Object descendant class

プロパテイ 値
Property Value

Notification
(no response

required)

Node operation
(response
required)

ECHONET
communication
middleware

Event name Function pointer

Event dispatch
loop

EN_Object descendant class

ECHONET lower-layer communication software

Message reception Message issuance

Node
management

EN_Node
EN_Object

Local device
control

Control program

Call Registration

EN_Event EN_Property

Message

ECHONET
communication
processing block

Protocol
difference
absorption
processing block

Control program

Application

Fig. 5.1 Relationship Between Classes

5-4

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.2.3 EN_Object class
The EN_Object class is an abstract class of an ECHONET object. Its role varies depending
on whether the ECHONET object exists in a local application or a remote application.

(Note)
The term “remote application” refers to an application other than the local application. If
two or more applications having the same ECHONET address run on the same ECHONET
node, objects on other applications are handled as “remote applications”.
For example, assume that ObjA and ObjB in the figure below are local applications and
that ObjC and ObjD are remote applications. Although the figure below uses separate
blocks for depicting the ECHONET Communication Middleware and ECHONET
Communication Middleware API, it simply explains about the concept and does not
stipulate the mounting specification

ECHONET communication
middleware API

Application

ECHONET lower-layer communication software

ECHONET communication middleware

obj.A obj.B

obj.C

Same address Different address

Local

Remote

As viewed
from A

ECHONET lower-layer communication software

ECHONET communication middleware

obj.D

Fig. 5.2 Relationship Between Local and Remote Applications

Local ECHONET object
This case applies, for instance, to a situation in which an air conditioner creates an
ECHONET air conditioner object. Here, the application generates EN_Object as a
descendant to create a new class. The application also overrides callbackReadMyProperty,
callbackWriteMyProperty, and other methods having a name beginning with “callback” in
order to respond to property access requests issued from remote applications to the local
ECHONET object. Finally, the application creates an instance and registers the created
instance in a node object offered by EN_Node. The overridden methods noted above are
accessed if property acquisition/setup is needed when, for instance, EN_Node receives a
local ECHONET object property access request message from a remote application.

5-5

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Remote ECHONET object
This object corresponds, for example, to a remote application’s air conditioner ECHONET
object instance created in a local application when the controller operates the air
conditioner ECHONET object of the remote application. The EN_Object instance merely
owns an ECHONET address, at which the ECHONET object to be accessed exists, and its
EOJ (Part 2, Section 4.2.6). The getProperty and setProperty methods of this instance are
used to access the object properties offered by the API. The API actually issues a message,
waits for a response if necessary, and returns a received response to the application as a
return code.

 Application (controller)

Controller

Application (air conditioner)

Air conditioner

1. An instance is generated with
the air conditioner address
specified by the EN_Object class.

3. For the air conditioner,
setProperty is called.

2. The EN_Object class is generated as a
descendant to define callbackWriteMyProperty.

4. A message is
received.

Air conditioner

4. The execution of callbackWriteMyProperty starts.

Local ECHONET object

Address-only ECHONET object

Fig. 5.3 Relationship Between Local and Remote ECHONET Objects

5-6

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.2.4 EN_Node class
The EN_Node class is an abstract class of an ECHONET node. It provides ECHONET
node/event management. The term “event” refers to an ECHONET message that has
arrived at the local node.
At startup, the application must create only one instance. The EN_Node constructor
creates a thread (event thread) that executes an event dispatch loop, which waits for events.
An instance can be registered by an EN_Node-defined method whose name begins with
“add”. When an event occurs, the event thread calls a specific method for an instance
associated with the event. After completion of related processing, the event thread waits
again for an event.
Events are classified into three types: an access request event for the local ECHONET
object, a notification event that occurs upon receipt of a notification message (including a
response message) issued by a remote application, and an error notification event.

Access request event
To mount a local ECHONET object, the application creates an instance for a class that is
created by inheriting EN_Object, and registers it using the
EN_Node.addPropertyEventListener method. When an access request event occurs, the
event thread checks the DEOJ (Part 2, Section 4.2.6) and calls the
callbackWriteMyProperty or callbackReadMyProperty method (array-type properties are
detailed later) for an instance that agrees in EOJ. The API transmits a response message as
needed depending on the return code of such a method.

Error notification event
To receive an error notification, the application inherits the EN_Object class and overrides
the callbackNotifyError method. The application registers the instance of the class with the
EN_Node.addNotifyErrorEventListener method. If an error notification event occurs, the
event thread decides which instance to call and calls the callbackNotifyError method.

5.2.5 EN_Property class

Properties handled by ECHONET objects are the values stored in the byte string EDT area
(Part 2, Section 4.2.9) within ECHONET messages. For enhanced convenience, they can
be referenced and created with byte type or int type in Java language. The EN_Property
class retains an EDT and offers a method for creating and referencing its value with byte
type or int type.
This permits the application to handle properties of various types through simple
procedures and the API to offer the same interface regardless of property type.

5-7

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.2.6 EN_Packet class
The term “event” refers to an ECHONET message that has arrived at the local node.
EN_Packet is a class having a member that retains event data. It is used as an argument for
an application definition method that is called when an event occurs. An instance of this
EN_Packet class is used to deliver event information from the API to the application.

5.2.7 EN_Exception exception class
When getProperty or setProperty is called to access an object of a remote node and the
associated access request cannot be processed, a response message is received indicating
the inability to process. In this case, an exception of EN_Exception type occurs The
application catches the exception and performs a process for handling situations in which
an access request cannot be made.

5.2.8 EN_EventListener interface
This interface type is necessary for event reception. Since the interface is implemented by
EN_Object, the user need not be aware of it.

5.2.9 EN_Const interface
Constants for use with the API are defined. This interface is implemented by all API
classes that use the constants. All applications referencing the constants returned from the
API must implement this interface.

5.2.10 EN_SecureOpt class
This class describes the option that specifies the execution form for secure communication
use.

5.2.11 EN_CpException exception class
When getProperty or setProperty is called in complex message form to access an object of
a remote node and the associated access request cannot be processed, a response message
is received indicating the inability to process. In this case, an exception of
EN_CpException type occurs. The application catches the exception and performs a
process for handling situations in which an access request cannot be made.

5-8

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3 Detailed API Specifications
The detailed API specifications set forth in this chapter define the following data types:

“byte” : Signed 1-byte integer type
“short” : Signed 2-byte integer type
“int” : Signed 4-byte integer type
“long” : Signed 8-byte integer type
“boolean” : Logical type
“String” : String type

In the subsequent detailed class descriptions, methods and members (private methods and
members) capsuled by classes are not stipulated. Since this is a matter of API mounting,
capsuled methods and members can be determined as appropriate at the time of mounting.

5-9

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1 EN_Object class
(1) Name
EN_Object ECHONET object class
(2) Function
 This class offers the operation of ECHONET object properties of a local node or a

remote node. An application can use this class to manipulate ECHONET objects in the
same manner without having to distinguish between local and remote nodes.

 The application must define its own ECHONET objects as subclasses of this class and
override the callbackReadMyProperty and callbackWriteMyProperty methods as
appropriate. For an operation on a remote ECHONET object, the application issues a
message to the associated node and, if necessary, waits for a response. For an
operation on a local ECHONET object, the application calls the
callbackReadMyProperty, callbackWriteMyProperty, or another overridden method
whose name begins with “callback”.

(3) Syntax
 public class EN_Object extends Object
 implements EN_EventListener, EN_Const;
(4) Notes

- The application must not create multiple instances having the same ECHONET
object code as the ECHONET object of another application within the local node.
Due care needs to be exercised when two or more applications coexist within the
local node.

- When the ECHONET address of a remote node or the local node is changed,
automatic tracking does not take place.

5-10

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.1 EN_Object
(1) Name
EN_Object ECHONET object constructor
(2) Function
 Constructs an ECHONET object.
(3) Syntaxes
 Syntax 1: public EN_Object(int EOJ) throws EN_Exception;
 Syntax 2: public EN_Object(int EOJ, int EA) throws

EN_Exception;
 Syntax 3: public EN_Object(int EOJ,int broadcastArea,

int broadcastGroup) throws EN_Exception;
 Syntax 4: public EN_Object(EN_Object eno) throws EN_Exception;
(4) Explanation
 Constructs an ECHONET object.
 EN_Object has address information in its member. It is mainly used to create EA, EOJ,

DEA, and EHDb3 in a message. Syntax 1 represents the address of a local ECHONET
object. Syntax 2 represents the address of a single node. Syntax 3 represents a
broadcast address (intra-domain broadcast/intra-subnet broadcast address). Syntax 4
depends on an argument.

 EA ECHONET address. The 8 high-order bits of the two low-order
bytes of EA denote a net ID, and the 8 low-order bits indicate a
node ID. This address represents the local ECHONET object by
default (syntax 1) or when EN_Object.MYSELF_NODE is
specified.

 EOJ ECHONET object code (Part 2, Section 4.2.6). The 24 low-order
bits are used to specify the class group, object class code, and
object instance code. If the object instance code is set to 0, a
special meaning is gained to indicate a broadcast for all instances
specified by the class group code and object class code. If
0xFFFFFFFF is specified (the code 0xFFFFFFFF is hereinafter
referred to as a wildcard code), a special meaning is gained to
indicate situations where all class groups, object class codes, and
object instance codes are contained.

 eno Copy source EN_Object instance. This is to be specified when
an instance having the same address information as an existing
EN_Object instance is to be created. Note that only the address
information will be inherited.

 broadcastArea Specifies the broadcast type selection code (Part 2, Section
4.2.2).

 broadcastGroup Specifies the broadcast target selection code (Part 2, Section
4.2.2).

5-11

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(5) Return code
 None
(6) Exceptions
 EAPI_ILLEGAL_PARAM : EOJ error (when the specified EOJ value exceeds

3 bytes in length), EA error (when the specified
EA value exceeds 2 bytes in length), and broadcast
type/broadcast target selection code error (when
the specified code is not stipulated in the
standard).

(7) Notes
- Before the application performs an override process for a local ECHONET object,

it must call a superclass.
- The operation varies depending on whether MYSELF_NODE or

EN_Node.getEA() value is specified as EA. If getProperty is called for the former
instance, a conversion is effected to call callbackReadMyProperty. However, such a
conversion does not take place if getProperty is called for the latter instance
(although callbackReadMyProperty may be called eventually). The latter instance
is used for accessing an ECHONET object on another application within the local
node.

5-12

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.2 setPropety
(1) Name
setProperty Property value setup service execution
(2) Function
 Executes the property setup service for an ECHONET object.
(3) Syntaxes
 Syntax 1:
 public void setProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
EN_Property p, //Property
boolean res, //True when a response is required
long timeout //Timeout time

) throws EN_Exception;
 Syntax 2:
 public void setProperty(

int EPC, //EPC
EN_Property p, //Property
boolean res //True when a response is required

) throws EN_Exception;
 Syntax 3:
 public void setProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
EN_Property p, //Property
long timeout, //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 4:
 public void setProperty(

int EPC, //EPC
EN_Property p, //Property
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 5:
 public void setProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPCnum, //EPC count
int EPC[], //EPC pair

5-13

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

EN_Property p[], //Property pair
boolean res, //True when a response is required
long timeout //Timeout time

) throws EN_CpException;
 Syntax 6:
 public void setProperty(

int EPCnum, //EPC count
int EPC[], //EPC pair
EN_Property p[], //Property pair
boolean res //True when a response is required

) throws EN_CpException;
 Syntax 7:
 public void setProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPCnum, //EPC count
int EPC[], //EPC pair
EN_Property p[], //Property pair
long timeout, //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_CpException;
 Syntax 8:
 public void setProperty(

int EPCnum, //EPC count
int EPC[], //EPC pair
EN_Property p[], //Property pair
EN_SecureOpt secopt //Secure communication option

) throws EN_CpException;
(4) Explanation
 Executes the property value setup service for an ECHONET object. Syntax 1 is used

to create an ECHONET message with the transmission source object specified. Syntax
2 is used to create an ECHONET message with no transmission source specified.
Syntaxes 3 and 4 provide for the use of secure communications. Syntaxes 5 to 8 are
used for a complex messaging operation, which involves syntaxes 1 to 4.

(a) When “this” address indicates a remote application, a message will be issued to
that application. If the argument res is true, a response will be awaited. In this case,
SEA and SEOJ are created from “sourceObject”, and DEA and DEOJ are created
from “this”. However, if “this” address is for broadcast (including cases in which
the object instance code = 0), a response will not be awaited, regardless of the value
“res”. If the remote application is within the same node, however, the mounting
specification determines whether or not to deliver the message to a network.

5-14

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(b) When the operation is to be performed on a local ECHONET object,
this.callbackWriteMyProperty is called. The argument for
callbackWriteMyProperty is created in the same manner as indicated under (a).

(c) If the value “res” is true, a message requiring a response (ESV = 0x61) is issued.
If the value “res” is false, on the other hand, a message requiring no response is
issued. When the value “res” is true, the response will be awaited for the
“timeout” time. If the value “res” is false, however, a response will not be awaited.
In this case, the remote ECHONET object does not return a response when
processing is completed normally. However, if processing cannot be performed, a
response message is returned to indicate that processing cannot be performed. To
permit the application to receive such a message, it is necessary to register a call
listener beforehand with EN_Node.addNotifyEventListener, which is described
below.

(d) When the “timeout” value is 0 or when syntax 2 or 7 is used, a response will not be
awaited. In this case, the response can be acquired in the form of a notification
event. For notification event acquisition, however, it is necessary to register a call
listener beforehand with EN_Node.addNotifyEventListener, which is described
below.

(e) In syntaxes 5 to 8, it is presumed that EPC[i] corresponds to p[i] (that is, p[i] is to
be set in relation to EPC[i]).

(f) When a syntax between 5 and 8 is used and the distant party returns a message to
indicate that processing cannot be performed, the API generates an exception.
When the application catches the exception, it can determine which of the
processes specified by a complex message could not be performed.

sourceObject Specifies the transmission source object (that is, the local ECHONET
object).

EPCnum Number of properties to be written.
EPC EPC value (Part 2, Section 4.2.7).
P Property value to be written.
res True when a response is required.
timeout Timeout time in milliseconds. A setting between 0 and 20000 can be

selected. Note, however, that the actual measurement time depends
on the processing system employed. The value 0 must be selected for
a broadcast. Even if a timeout time other than 0 is selected for a
broadcast, a setting of 0 will be used for processing.

secopt Secure communication option.
(5) Return code
 None

5-15

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(6) Exceptions
EAPI_NOTOPEN : A call was issued before completion of requestStart().
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_NORESOURCE : The transmission was not acceptable because the send

buffer was full.
EAPI_TIMEOUT : A timeout occurred.
EAPI_NOTSEND : Some data was not transmitted because of an unknown

error.
EAPI_NOTOPERATIVE : The received response message indicated that

processing could not be performed.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
EAPI_SEC_ERROR : A secure communication error (authentication error)

occurred.
(7) Notes

- When “res” is set to true with the “timeout” value set at 0, a return occurs
immediately without waiting for a response. However, a response can be obtained
in the form of a notification event. This should be used when the program performs
a process to receive a response asynchronously with respect to a request
transmission to a destination node.

- If two or more requests issued to the same object/same property are processed by
the same object, the results are not guaranteed. In such a case, the obtained response
messages are identical to each other and cannot be identified by the API.

- If a remote object returns a normal response message after a timeout, a notification
event is returned to the application. To permit the application to receive such a
notification event, however, it is necessary to register a call listener beforehand
with EN_Node.addNotifyEventListener.

- For an EN_Object that is set for “timeout (! = 0)” to wait for a response, the
response is returned to the method. For an event triggered by such a response,
however, the response is returned to all EN_Objects (of the same application). No
distribution of the same object takes place, except for a return of the response to the
method, even when listener registration is completed.

- When a syntax between 5 and 8 is used, the API mounting specification determines
how multiple units of EPC[] requested by an application are to be organized into a
complex message.

5-16

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.3 getProperty
(1) Name
getProperty Property acquisition service execution
(2) Function
 Executes the property acquisition service for an ECHONET object.
(3) Syntaxes
 Syntax 1:
 public EN_Property getProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
boolean req_broadcast, //True for executing the property value

notification request service
long timeout //Timeout time

) throws EN_Exception;
 Syntax 2:
 public EN_Property getProperty(

int EPC, //EPC
boolean req_broadcast //True for executing the property value

notification request service
) throws EN_Exception;
 Syntax 3:
 public EN_Property getProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
boolean req_broadcast, //True for executing the property value

notification request service
long timeout, //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 4:
 public EN_Property getProperty(

int EPC, //EPC
boolean req_broadcast, //True for executing the property value

notification request service
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;

5-17

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 Syntax 5:
 public EN_Property[] getProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPCnum, //EPC count
int EPC[], //EPC pair
long timeout //Timeout time

) throws EN_CpException;
 Syntax 6:
 public EN_Property[] getProperty(

int EPCnum, //EPC count
int EPC[] //EPC pair

) throws EN_CpException;
 Syntax 7:
 public EN_Property[] getProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPCnum, //EPC count
int EPC[], //EPC pair
long timeout, //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 8:
 public EN_Property[] getProperty(

int EPCnum, //EPC count
int EPC[], //EPC pair
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
(4) Explanation
 Executes the property acquisition service for the ECHONET object specified by “this”,

and returns the acquired property. Syntax 1 is used to create an ECHONET message
with the transmission source object specified. Syntax 2 is used to create an ECHONET
message without specifying the transmission source object. Syntaxes 3 and 4 provide
for the use of secure communications. Syntaxes 5–8 are used for complex messaging,
which involves syntaxes 1 to 4.

5-18

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(a) When “this” address indicates a remote application, a message will be issued to
that application to wait for a response. In this case, SEA and SEOJ are created
from “sourceObject”, and DEA and DEOJ are created from “this”. However, if
“this” address is for a broadcast (including a case in which the object instance
code = 0) or req_broadcast is used to specify the execution of the property value
notification request service, a response will not be awaited. In this case, the
response can be obtained in the form of a notification event. For the reception of
such a notification event, however, the application must register a call listener
beforehand with EN_Node.addNotifyEventListener, which is described below. If
the remote application is within the same node, the mounting specification
determines whether or not to deliver the message to a network.

(b) When “this” address is the address of both the local node and local ECHONET
object, this.callbackReadMyProperty is called. The argument for
callbackReadMyProperty is created in the same manner as indicated under (a).

(c) When “this” address is the address of the local node and not the address of the
local ECHONET object, some other appropriate EN_Object within the local node
is called.

(d) When the “timeout” value is 0 or when syntax 2 or 7 is used, a response will not be
awaited. In this case, the response can be acquired in the form of a notification
event. For notification event acquisition, however, a call listener must be
registered beforehand with EN_Node.addNotifyEventListener, which is
described below.

(e) The property value notification request service can be executed by this method.
(f) When a syntax between 5 and 8 is used and the distant party returns a message

indicating that processing cannot be performed, the API generates an exception.
When the application catches the exception, it can determine which of the
processes specified by a complex message could not be performed.

sourceObject Specifies the transmission source object (that is, the local ECHONET
object).

EPCnum Number of properties to be read.
EPC EPC value (Part 2, Section 4.2.7).
req_broadcast Specifies whether or not to execute the property value notification

request service. To execute the service, select “true”.
timeout Timeout time in milliseconds. A setting between 0 and 20000 can be

selected. Note, however, that the actual measurement time depends
on the processing system employed. For a broadcast or broadcast
notification request, select the value 0. Even if a timeout time setting
other than 0 is selected for a broadcast, processing will be performed
at a setting of 0.

secopt Secure communication option.

5-19

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(5) Return code
 Acquired property value (or its array when a syntax between 5 and 8 is used).

However, the null value is returned if the operation relates to a broadcast address
(intra-domain broadcast or intra-subnet broadcast address), if the “timeout” value is
set to 0, or if syntax 2 is used.

 When a syntax between 5 and 8 is used, the number of property values to be returned
is equal to EPCnum. For their arrangement, EN_Property[i] must correspond to
EPC[i].

(6) Exceptions
EAPI_NOTOPEN : A call was issued before completion of requestStart().
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_NORESOURCE : The transmission was not acceptable because the send

buffer was full.
EAPI_TIMEOUT : A timeout occurred.
EAPI_NOTSEND : Some data was not transmitted because of an unknown

error.
EAPI_NOTOPERATIVE : The received response message indicated that

processing could not be performed.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
EAPI_SEC_ERROR : A secure communication error (authentication error)

occurred.
(7) Notes

- If two or more requests issued to the same object/same property are processed by
the same object, the results are not guaranteed. In such a case, the obtained response
messages are identical to each other and cannot be identified by the API.

- When only one value is explicitly specified as “this” address (i.e., when a broadcast
is not intended), the acquired property value is returned as a return code. If “this” is
a broadcast address (intra-domain broadcast or intra-subnet broadcast address) or a
broadcast notification request, the null value is returned as a return code.

- If a remote object returns a normal response message after a timeout, a notification
event is returned to the application. To permit the application to receive such a
notification event, however, it is necessary to register a call listener beforehand
with EN_Node.addNotifyEventListener.

- When the “timeout” value is set at 0, a return occurs immediately without waiting
for a response. However, the response can be obtained in the form of a notification
event. This should be used when the program performs a process to receive a
response asynchronously with respect to a request transmission to a destination
node.

5-20

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

- For an EN_Object set for “timeout (! = 0)” to wait for a response, the response is
returned to the method. For an event triggered by such a response, however, the
response is returned to all EN_Objects (of the same application). No distribution of
the same object takes place, except for a return of the response to the method, even
when listener registration is completed.

- When a syntax between 5 and 8 is used, the API mounting specification determines
how multiple units of EPC[] requested by an application are to be organized into a
complex message. If a message indicating the inability to process is returned in
response to at least one message segment in a complex message, the API generates
an exception. It is desirable that the application call this method by specifying
EPC[] so that the response message does not exceed the maximum ECHONET
message length.

5-21

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.4 inProperty
(1) Name
infProperty Property notification issuance
(2) Function
 Issues a notification message from the application.
(3) Syntaxes
 Syntax 1:
 public void infProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC //EPC

) throws EN_Exception;
 Syntax 2:
 public void infProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
EN_Property p //Property

) throws EN_Exception;
 Syntax 3:
 public void infProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 4:
 public void infProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
EN_Property p, //Property
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 5:
 public void infProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
boolean res, //True when a response is required
long timeout //Timeout time

) throws EN_Exception;

5-22

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 Syntax 6:
 public void infProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
EN_Property p, //Property
boolean res, //True when a response is required
long timeout //Timeout time

) throws EN_Exception;
 Syntax 7:
 public void infProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
boolean res, //True when a response is required
long timeout, //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 8:
 public void infProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
EN_Property p, //Property
boolean res, //True when a response is required
long timeout, //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 9:
 public void infProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPCnum, //EPC count
int EPC[], //EPC pair
boolean res, //True when a response is required
long timeout //Timeout time

) throws EN_Exception;
 Syntax 10:
 public void infProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPCnum, //EPC count
int EPC[], //EPC pair
EN_Property p[], //Property pair
boolean res, //True when a response is required

5-23

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

long timeout //Timeout time
) throws EN_Exception;
 Syntax 11:
 public void infProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPCnum, //Number of EPC pairs
int EPC[], //EPC
boolean res, //True when a response is required
long timeout, //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 12:
 public void infProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPCnum, //EPC count
int EPC[], //EPC pair
EN_Property p[], //Property pair
boolean res, //True when a response is required
long timeout, //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
(4) Explanation
 Issues a notification message from the application. This issuance includes a state

transition announcement to be made when a specified property changes its status and a
property value notification to be transmitted at regular intervals.

 If a state transition occurs in a property within a local ECHONET object when the
property’s status change needs to be announced, the application must call this method.
Further, if a notification needs to be transmitted at regular time intervals, the
application must call this method at regular time intervals.

 This method supports twelve syntaxes.
 When syntax 1 is used, the message’s SEA and SEOJ are created from “sourceObject”

and DEA is created from “this”. For EDT, the API calls the
sourceObject.callbackReadMyProperty method and uses its return value. Therefore,
callbackReadMyProperty must be mounted for sourceObject.

 When syntax 2 is used, the message’s SEA and SEOJ are created from “sourceObject”,
and DEA is created from “this”. Further, EDT is created from EPC and p.

 It is presumed that syntax 1 will be used for periodic property value notification.
Therefore, the application does not have to furnish an argument as a property value
each time it is needed. On the other hand, syntax 2 is organized on the presumption
that it will be used for reporting a property value when the application status changes.
Therefore, the property value to be reported is to be set as the argument.

5-24

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 Syntaxes 3 and 4 provide for the use of secure communications.
 Syntaxes 5–8 execute the property notification service requiring a response, which is

newly added by Specification Version 2.10, in relation to syntaxes 1 to 4.
 Syntaxes 9–12 are used for complex messaging, which involves syntaxes 5–8.

(a) If “res” is set to false, syntaxes 9–12 are equivalent to syntaxes 1–4.
(b) If “this” address is for a broadcast (including a case in which the object instance

code = 0), “res” cannot be set to true.
sourceObject Specifies the transmission source object (that is, the local ECHONET

object).
EPCnum Number of properties to be read.
EPC EPC value (Part 2, Section 4.2.7).
ｐ Property value to be reported.
res Specifies whether or not to execute the property notification service

requiring a response. To execute the service, select “true”.
timeout Timeout time in milliseconds. A setting between 0 and 20000 can be

selected. Note, however, that the actual measurement time depends
on the processing system employed. For a broadcast or broadcast
notification request, select the value 0. Even if a timeout time setting
other than 0 is selected for a broadcast, processing will be performed
at a setting of 0.

secopt Secure communication option.
(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before completion of requestStart().
EAPI_ILLEGAL_PARAM An illegal argument was used.
EAPI_NORESOURCE : The transmission was not acceptable because the send

buffer was full.
EAPI_NOTSEND : Some data was not transmitted because of an unknown

error.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
(7) Notes

- Nothing occurs if callbackReadMyProperty generates an exception.
- DEOJ is not to be attached to messages except for individual notifications.

5-25

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.5 callbackReadMyProperty
(1) Name
callbackReadMyProperty Property value acquisition service mounting
(2) Function
 Performs a property value acquisition process for a local ECHONET object.
(3) Syntaxes
 public EN_Property callbackReadMyProperty(

EN_Packet ev //Details of a generated event
) throws EN_Exception;
(4) Explanation
 To prepare for a call from the API, the application must describe the process for this

method. The application must furnish under the specified name and override the
method describing the process to be performed when a property value read request is
received in relation to a local ECHONET object. This method is called when a Get,
GetM, INF_REQ, or INFM_REQ service request is received in relation to this
ECHONET object.

 The application must return the property value of the “ev”-specified EPC. In the case
of an array element property read, the application must return a value that corresponds
to the “ev”-specified EPC and “elementNo”.

 If processing cannot be performed or if the application has not completed an override,
an exception occurs.

 If such an exception occurs, the API returns a response message to the service request
source to indicate that processing cannot be performed.

 ev Details of a generated event.
(5) Return code
 Property to be returned.
(6) Exceptions
EAPI_NOTACCEPT : The property to be processed was not found. An array

element property was encountered when a non-array type was specified.
A non-array element property was encountered when an array type was
specified. The array element to be processed was not found. Some other
error was encountered. Or, the application has not completed an
override.

(7) Notes
- The method overridden should terminate as soon as possible.
- When the API uses this method to pass EN_Packet to the application, the

EN_Packet contains an EN_Object type sourceObject and destinationObject.
However, the application must not use them for purposes other than acquiring
EA/EOJ information for the transmission source or transmission destination.

5-26

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.6 callbackWriteMyProperty
(1) Name
callbackWriteMyProperty Property value setup service mounting
(2) Function
 Performs property value setup for a local ECHONET object.
(3) Syntaxes
 public boolean callbackWriteMyProperty (

EN_Packet ev //Details of a generated event
) throws EN_Exception;
(4) Explanation
 To prepare for a call from the API, the application must describe the process for this

method. The application must furnish under the specified name and override the
method describing the process to be performed when a property value setup request is
received in relation to a local ECHONET object. This method is called when a SetI,
SetC, SetMI, or SetMC service request is received in relation to this ECHONET
object.

 ev Details of a generated event.
(5) Return code
 Returns “true” under normal conditions. If “false” is returned, response message

issuance will be inhibited.
(6) Exceptions
EAPI_NOTACCEPT : The property to be processed was not found. An array

element property was encountered when a non-array type was specified.
A non-array element property was encountered when an array type was
specified. The array element to be processed was not found. Some other
error was encountered. Or, the application has not completed an
override.

(7) Notes
- The method overridden should terminate as soon as possible. When an actual

device is controlled, this method should terminate before the end of the control.
- When the API uses this method to pass EN_Packet to the application, the

EN_Packet contains an EN_Object type sourceObject and destinationObject.
However, the application must not use them for purposes other than acquiring
EA/EOJ information for the transmission source or transmission destination.

5-27

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.7 callbackNotifyEvent
(1) Name
callbackNotifyEvent Notification process
(2) Function
 Callback method called upon receipt of a notification.
(3) Syntaxes
 public void callbackNotifyEvent(

EN_Packet ev //Details of a generated event
) throws EN_Exception;
(4) Explanation
 To prepare for a call from the API, the application must describe the process for this

method. This method is called upon receipt of a notification from the API (including
cases where the INF or INFM service is received in relation to this ECHONET object).
The application must furnish under the specified name and override the method
describing the process to be performed upon receipt of a notification event.

 When EN_Node.addNotifyEventListener is used to register an instance created by the
application, the callbackNotifyEvent method for that instance will be called.

 If processing cannot be performed, that is, the application has not completed an
override, the API generates an exception.

 ev Details of a generated event.
(5) Return code
 None
(6) Exceptions
EAPI_NOTACCEPT : The application has not performed an override.
(7) Notes

- The method overridden should terminate as soon as possible. When an actual
device is controlled, this method should terminate before the end of the control.

- When the API uses this method to pass EN_Packet to the application, the
EN_Packet contains an EN_Object type sourceObject and destinationObject.
However, the application must not use them for purposes other than acquiring
EA/EOJ information for the transmission source or transmission destination.

5-28

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.8 callbackNotifyError
(1) Name
 callbackNotifyError Error notification process
(2) Function
 Callback method called upon receipt of an error notification.
(3) Syntaxes
 public void callbackNotifyError(

int errorCode //Details of an encountered error
) throws EN_Exception;
(4) Explanation
 To prepare for a call from the API, the application must describe the process for this

method. This method is called when the API’s error notification is received. The
application must furnish under the specified name and override the method describing
the process to be performed upon receipt of an error notification.

 When EN_Node.addNotifyErrorEventListener is used to register an instance created
by the application, the callbackNotifyError method for that instance will be called.

 If processing cannot be performed, that is, the application has not completed an
override, the API generates the EAPI_NOTACCEPT exception.

 The error description is delivered by “errorCode”.
errorCode Details of an encountered error. The following errors may be

reported. However, the conditions for the call of this method depend
on the mounting of the ECHONET Communication Middleware.
EAPI_LOW_ERROR : Error in the lower-layer communication

software.
EAPI_PRO_ERROR : Software error in the Protocol Difference

Absorption Processing Block.
EAPI_MID_ERROR : Software error in the ECHONET

Communications Processing Block.
(5) Return code
 None
(6) Exceptions
EAPI_NOTACCEPT : The application has not performed an override.
(7) Notes

- The method overridden should terminate as soon as possible. When an actual
device is controlled, this method should terminate before the end of the control.

- When the API uses this method to pass EN_Packet to the application, the
EN_Packet contains an EN_Object type sourceObject and destinationObject.
However, the application must not use them for purposes other than acquiring
EA/EOJ information for the transmission source or transmission destination.

5-29

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.9 getEA
(1) Name
getEA ECHONET address return
(2) Function
 Returns the ECHONET address.
(3) Syntaxes
 public final int getEA() throws EN_Exception;
(4) Explanation
 Returns the ECHONET address. When a local ECHONET object is specified,

EN_Object.MYSELF_NODE returns. If not, the ECHONET address is returned.
(5) Return code
 Object ECHONET address. Only two low-order bytes are used.
(6) Exceptions
EAPI_NOTOPEN : A call was issued before requestStart() completion.
(7) Notes
 None

5-30

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.10 getEOJ
(1) Name
getEOJ ECHONET object code return
(2) Function
 Returns the ECHONET object code.
(3) Syntaxes
 public final int getEOJ();
(4) Explanation
 Returns the ECHONET object code.
(5) Return code
 ECHONET object code. Only three low-order bytes are used.
(6) Exceptions
 None
(7) Notes
 None

5-31

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.11 getAddrKind
(1) Name
getAddrKind Address type acquisition
(2) Function
 Returns a code for indicating whether EN_Object is for a broadcast or an individual

transmission.
(3) Syntaxes
 public final int getAddrKind();
(4) Explanation
 Returns the ECHONET object code.
(5) Return code
 When a broadcast is specified, APIVAL_BROAD_KIND returns. When an individual

transmission is specified, APIVAL_EA_KIND is returned.
(6) Exceptions
 None
(7) Notes
 None

5-32

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.12 setAccessRule
(1) Name
setAccessRule Access rule setup
(2) Function
 Performs property access rule setup for the API.
(3) Syntaxes
 Syntax 1:
 public void setAccessRule(

int EPC, //EPC
int accessRule //Access rule

) throws EN_Exception;
 Syntax 2:
 public void setAccessRule(

int EPC, //EPC
int accessRule //Access rule
int keyKind //Access restriction level

) throws EN_Exception;
(4) Explanation
 The application must use this method to perform access rule setup for all property

EPCs of a local ECHONET object before registering the local ECHONET object with
EN_Node.

 As an access rule for an EPC-specified property, the access rule specified by
accessRule will be set for the API.

 Specify the accessRule value using a constant whose name begins with
APIVAL_RULE defined for the EN_Const interface. To set two or more access rules,
specify their OR.

 Example) Non-array EPC = 0x83, Set, Get possible in relation to the EN_Object
instance obj (assuming that “implements EN_Const” is completed):
 obj.setAccessRule(
 0x83,
 (APIVAL_RULE_SET | APIVAL_RULE_GET)
);

 If accessRule is set to 0x00000000, the access rule for the target EPC will be deleted
from the API.

 After an access rule is set, the API uses it for access request event filtering. In
accordance with the access rule for a received service, the API determines whether or
not processing can be performed. When processing can be performed, the API calls
the callback method for the received service. If the API concludes that processing
cannot be performed, it creates a response message indicating that processing cannot
be performed, and returns it to the request source.

 Syntax 2 provides a method for secure communication. It permits different access

5-33

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

rules to be set for various distant party types. The follow four types of distant parties
are selectable:
APIVAL_ACCESS_ANO : Anonymous level
APIVAL_ACCESS_USER : User level
APIVAL_ACCESS_SP : Service Provider level
APIVAL_ACCESS_MAKER : Maker level

 When setup is performed with syntax 1, the Anonymous level is selected as the distant
party type.

(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_NORESOURCE : Registration could not be completed.
EAPI_ILLEGAL_PARAM : The specified EPC, access rule, or access restriction

level was illegal.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
(7) Notes

- If an access rule is set for a property whose access rule has already been set, the
newly set access rule takes effect (overwrites the previous one).

- If a remote node’s service request is received in relation to an EPC whose
accessRule is set to 0x00000000, the API does not call a method whose name
begins with “callback”.

5-34

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.13 getAccessRule
(1) Name
getAccessRule Access rule read
(2) Function
 Reads the access rule for a property that is set for the API.
(3) Syntaxes
 Syntax 1:
 public int getAccessRule(

int EPC, //EPC
) throws EN_Exception;
 Syntax 2:
 public int getAccessRule(

int EPC, //EPC
int AccessLevel //Access restriction level

) throws EN_Exception;
(4) Explanation
 Reads the access rule for an EPC-specified property from the API.
 Syntax 2 is used to read an access rule that is set at a distant party’s access restriction

level for secure communication. The following four types of distant parties can be
selected:

APIVAL_ACCESS_ANO : Anonymous level
APIVAL_ACCESS_USER : User level
APIVAL_ACCESS_SP : Service Provider level
APIVAL_ACCESS_MAKER : Maker level

 When syntax 1 is used to read from the API that supports the secure communication
function, the access rule for the Anonymous level is returned.

(5) Return code
 Access rule, which is in the same form as the one specified by setAccessRule().
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_ILLEGAL_PARAM : An illegal argument was used (the specified EPC was

outside the stipulated range (the EPC for “int” must be
0x100 or greater or smaller than 0x80) or the
“AccessLevel” was outside the acceptable range).

EAPI_NOTARGET : The target EPC was not registered.
(7) Notes

- If the specified EPC is not set by setAccessRule(), the EAPI_NOTTARGET
exception occurs because it is concluded that the EPC is not handled by the target
EN_Object.

5-35

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

- If the specified EPC is set by setAccessRule(), a normal return code is
obtained because it is concluded that the EPC is handled by the target EN_Object.

5-36

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.4.1.14 isIn
(1) Name
isIn Address inclusive relation check
(2) Function
 Checks the address inclusive relationship.
(3) Syntaxes
 public final boolean isIn(EN_EventListner x);
(4) Explanation
 Returns “true” if “x” includes “this”. This case is equivalent to cases where the (a1) or

(a2) condition is met and the (b1), (b2), or (b3) condition is met.
 The EOJ object instance code of (a1)x is 0 and “x” and “this” are equal in EOJ except

for the instance code.
 The EOJ of (a2)x is equal to the EOJ of “this”.
 The address of (b1)x is equal to the address of “this”.
 The address of (b2)x is a broadcast address (intra-domain broadcasts or intra-subnet

broadcast address), the address of “this” is not a broadcast address, and the address of
“x” includes “this”.

 The addresses of (b3)x and “this” are broadcast addresses, and all the addresses
included in “x” are included in “this”.

(5) Return code
 Returns true if “x” includes “this”, otherwise returns false.
(6) Exceptions
 None
(7) Notes
 None

5-37

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.15 setMProperty
(1) Name
setMProperty Array-type property value setup service execution
(2) Function
 Executes the service for setting an element for an array-type property in relation to an

ECHONET object.
(3) Syntaxes
 Syntax 1:
 public void setMProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
EN_Property p, //Property value to be set for a specified

element
boolean res, //True when a response is required
long timeout //Timeout time

) throws EN_Exception;
 Syntax 2:
 public void setMProperty(

int EPC, //EPC
int elementNo, //Array element number
EN_Property p, //Property value to be set for a specified

element
boolean res, //True when a response is required

) throws EN_Exception;
 Syntax 3:
 public void setMProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
EN_Property p, //Property
long timeout, //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
(4) Explanation
 This method is used when element setup is to be performed as indicated below in

relation to an ECHONET object array property specified by “this”.
 Use “elementNo” to specify the property array element position for element setup.
 Syntax 1 is used to create an ECHONET message with the transmission source object

specified.

5-38

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 Syntax 2 is used to create an ECHONET message without specifying the transmission
source object.

 Syntaxes 3 and 4 provide for the use of secure communications.
(a) When “this” address is for a remote application, a message will be issued to that

remote application. When the “res” argument is true, a response will be awaited.
In such a case, SEA and SEOJ are created from “sourceObject”, and DEA and
DEOJ are created from “this”. However, if “this” address is for a broadcast
(including a case in which the object instance code = 0), a response will not be
awaited without regard to the “res” value. If the remote application is within the
same node, the mounting specification determines whether or not to deliver the
message to a network.

(b) When the operation is to be performed for a local ECHONET object,
this.callbackWriteMyProperty will be called. The argument for
callback.WriteMyProperty is created in the same manner as indicated under (a).

(c) When the “res” value is true, a message requiring a response (ESV = 0x65) will
be issued. If the value “res” is false, on the other hand, a message requiring no
response (ESV = 0x64) will be issued. When the “res” value is true, the response
will be awaited for the “timeout” time. When the “res” value is false, a response
will not be awaited. In this case, the remote ECHONET object returns no response
when processing is completed normally. If processing cannot be performed,
however, the remote ECHONET object returns a message indicating the inability
to process (ESV = 0x54). To permit the application to receive such a message, it is
necessary to register a call listener beforehand with
EN_Node.addNotifyEventListener, which is described below.

(d) When the “timeout” value is 0 or when syntax 2 is used, a response will not be
awaited. In this case, however, the response can be acquired in the form of a
notification event. For the reception of such a notification event, however, it is
necessary that the application register a call listener beforehand with
EN_Node.addNotifyEventListener, which is described below.

sourceObject Specifies the transmission source object (that is, the local ECHONET
object).

EPC EPC value (Part 2, Section 4.2.7).
elementNo Element number of the array element to be written.
p Property value to be written.
res Select “true” when a response is required.
timeout Timeout time in milliseconds. A setting between 0 and 20000 can be

selected. Note, however, that the actual measurement time depends
on the processing system employed. The value 0 must be selected for
a broadcast. Even if a timeout time setting other than 0 is selected for
a broadcast, processing will be performed at a setting of 0.

5-39

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

secopt Secure communication option.
(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_NORESOURCE : The transmission was not acceptable because the send

buffer was full.
EAPI_TIMEOUT : A timeout occurred.
EAPI_NOTSEND : Some data was not transmitted because of an unknown

error.
EAPI_NOTOPERATIVE : The received response message indicated that

processing could not be performed.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
EAPI_SEC_ERROR : A secure communication error (authentication error)

occurred.
(7) Notes

- When “res” is set to true with the “timeout” value set at 0, a return occurs
immediately without waiting for a response. However, the response can be obtained
in the form of a notification event. This should be used when the program performs
a process to receive a response asynchronously with respect to a request
transmission to a destination node.

- If two or more requests issued to the same object/same property are processed by
the same object, the results are not guaranteed. In such a case, the obtained response
messages are identical to each other and cannot be identified by the API.

- If the remote object returns a normal response message after a timeout, a
notification event will be returned to the application. To allow the application to
receive such a notification event, however, it is necessary to register a call listener
beforehand with EN_Node.addNotifyEventListener.

- For an EN_Object that is set for “timeout (! = 0)” to wait for a response, the
response is returned to the method. For an event triggered by such a response,
however, the response is returned to all EN_Objects (of the same application) No
distribution of the same object takes place, except for a return of the response to the
method, even when listener registration is completed.

5-40

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.16 getMProperty
(1) Name
getMProperty Array-type property value acquisition service execution
(2) Function
 Executes the service for acquiring an array-type property element in relation to an

ECHONET object.
(3) Syntaxes
 Syntax 1:
public EN_Property getMProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
boolean req_broadcast, //Select “true” when requesting a

broadcast notification
long timeout //Timeout time

) throws EN_Exception;
 Syntax 2:
 public EN_Property getMProperty(

int EPC, //EPC
int elementNo, //Array element number
boolean req_broadcast, //Select “true” when requesting a

broadcast notification
) throws EN_Exception;
 Syntax 3:
 public void getMProperty(

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
boolean req_broadcast, //Select “true” when executing the

property value notification request
service.

long timeout, //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
(4) Explanation
 This method is used to achieve element value acquisition as indicated below in

relation to a remote ECHONET object array property specified by “this”.
 Use “elementNo” to specify the property array element position for element

acquisition.
 Syntax 1 is used to create an ECHONET message with the transmission source object

specified.

5-41

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 Syntax 2 is used to create an ECHONET message without specifying the transmission
source object.

 Syntaxes 3 and 4 provide for the use of secure communications.
(a) When “this” address is for a remote application, a message will be issued to that

remote application to wait for a response. In this case, SEA and SEOJ are created
from “sourceObject” and DEA and DEOJ are created from “this”. However, if
“this” address is for a broadcast (including a case in which the object instance
code = 0) or req_broadcast is used to specify the execution of the property value
notification request service, a response will not be awaited. In this case, the
response can be obtained in the form of a notification event. For the reception of
such a notification event, however, it is necessary that the application register a
call listener beforehand with EN_Node.addNotifyEventListener, which is
described below. If the remote application is within the same node, the mounting
specification determines whether or not to deliver the message to a network.

(b) When “this” address is the address of both the local node and local ECHONET
object, this.callbackReadMyProperty is called. The argument for
callbackReadMyProperty is created in the same manner as indicated under (a).

(c) If “this” address is for the local node and not the address of a local ECHONET
object, some other appropriate EN_Object within the local node is called.

(d) If the timeout value is 0 or if syntax 2 is used, a response will not be awaited. In
this case, the response can be acquired in the form of a notification event. For the
acquisition of such a notification event, however, it is necessary that the
application register a call listener beforehand with
EN_Node.addNotifyEventListener, which is described below.

(e) The property value notification request service can be executed by this method.
sourceObject Specifies the transmission source object (that is, the local ECHONET

object).
EPC EPC value (Part 2, Section 4.2.7) to be read.
elementNo Element number of the array element to be read.
req_broadcast Specifies whether or not to execute the property value notification

request service. To execute the service, select “true”.
timeout Timeout time in milliseconds. A setting between 0 and 20000 can be

selected. Note, however, that the actual measurement time depends
on the processing system employed. The value 0 must be selected for
a broadcast. Even if a timeout time setting other than 0 is selected for
a broadcast, processing will be performed at a setting of 0.

secopt Secure communication option.

5-42

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(5) Return code
 Property value acquired from a property having an array structure. However, the null

value is returned if the operation relates to a broadcast address (intra-domain
broadcast or intra-subnet broadcast address), if the “timeout” value is set to 0, or if
syntax 2 is used.

(6) Exceptions
EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_NORESOURCE : The transmission was not acceptable because the send

buffer was full.
EAPI_TIMEOUT : A timeout occurred.
EAPI_NOTSEND : Some data was not transmitted because of an unknown

error.
EAPI_NOTOPERATIVE : The received response message indicated that

processing could not be performed.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
EAPI_SEC_ERROR : A secure communication error (authentication error)

occurred.
(7) Notes

- If two or more requests issued to the same object/same property are processed by
the same object, the results are not guaranteed. In such a case, the obtained response
messages are identical to each other and cannot be identified by the API.

- If the remote object returns a normal response message after a timeout, a
notification event will be returned to the application. To allow the application to
receive such a notification event, however, it is necessary to register a call listener
beforehand with EN_Node.addNotifyEventListener.

- When the “timeout” value is set to 0, a return occurs immediately without waiting
for a response. However, the response can be obtained in the form of a notification
event. This should be used when the program performs a process to receive a
response asynchronously with respect to a request transmission to a destination
node.

- For an EN_Object that is set for “timeout (! = 0)” to wait for a response, the
response is returned to the method. For an event triggered by such a response,
however, the response is returned to all EN_Objects (of the same application). No
distribution of the same object takes place, except for a return of the response to the
method, even when listener registration is completed.

5-43

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.17 addMProperty
(1) Name
addMProperty Array-type property addition request
(2) Function
 Executes the service for adding an array-type property element to an ECHONET

object.
(3) Syntaxes
 Syntax 1:
 public void addMProperty (

EN Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
EN_Property p, //Property to be added to a specified

element
Boolean res, //True when a response is required
long timeout //Timeout time

) throws EN_Exception;
 Syntax 2:
 public void addMProperty (

int EPC, //EPC
int elementNo, //Array element number
EN_Property p, //Property to be added to a specified

element
boolean res, //True when a response is required

) throws EN_Exception;
 Syntax 1:
 public void addMProperty (

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
EN_Property p, //Property to be added to a specified

element
boolean res, //True when a response is required
long timeout //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;

5-44

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 Syntax 2:
 public void addMProperty (

int EPC, //EPC
int elementNo, //Array element number
EN_Property p, //Property to be added to a specified

element
boolean res, //True when a response is required
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
(4) Explanation
 This method is used to apply an element addition to a remote ECHONET object array

property specified by “this”.
 Use “p” to specify the property to be added to a specified element.
 Use “elementNo” to specify the property array element position for “p” addition.
 Syntax 1 is used to create an ECHONET message with the transmission source object

specified.
 Syntax 2 is used to create an ECHONET message without specifying the transmission

source object.
 Syntaxes 3 and 4 provide for the use of secure communications.

(a) When “this” address is for a remote application, a message will be issued to that
remote application. When the “res” argument is true, a response will be awaited.
In such a case, SEA and SEOJ are created from “sourceObject”, and DEA and
DEOJ are created from “this”. However, if “this” address is for a broadcast
(including cases in which the object instance code = 0), a response will not be
awaited. If the remote application is within the same node, the mounting
specification determines whether or not to deliver the message to a network.

(b) When the operation is to be performed for a local ECHONET object,
this.callbackAddMyPropertyMember will be called. The argument for
thiscallbackAddMyPropertyMember is created in the same manner as indicated
under (a).

(c) When the “res” value is true, a message requiring a response (ESV = 0x69) will
be issued. When the “res” value is false, a message requiring no response (ESV =
0x68) will be issued. When the “res” value is true, a response will be awaited for
the “timeout” time. When the “res” value is false, a response will not be awaited.
In this case, the remote ECHONET object returns no response when processing is
completed normally. If processing cannot be performed, however, the remote
ECHONET object returns a message indicating the inability to process (ESV =
0x58). To permit the application to receive such a message, it is necessary to
register a call listener beforehand with EN_Node.addNotifyEventListener, which
is described below.

(d) If the timeout value is 0 or if syntax 2 is used, a response will not be awaited. In

5-45

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

this case, the response can be acquired in the form of a notification event. For the
acquisition of such a notification event, however, it is necessary that the
application register a call listener beforehand with
EN_Node.addNotifyEventListener, which is described below.

sourceObject Specifies the transmission source object (that is, the local ECHONET
object).

EPC Target EPC value (Part 2, Section 4.2.7) to be added.
elementNo Element number of the array element to be added.
p Property value to be added.
res Select “true” when a response is required.
timeout Timeout time in milliseconds. A setting between 0 and 20000 can be

selected. Note, however, that the actual measurement time depends
on the processing system employed. The value 0 must be selected for
a broadcast. Even if a timeout time setting other than 0 is selected for
a broadcast, processing will be performed at a setting of 0.

secopt Secure communication option.
(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_NORESOURCE : The transmission was not acceptable because the send

buffer was full.
EAPI_TIMEOUT : A timeout occurred.
EAPI_NOTSEND : Some data was not transmitted because of an unknown

error.
EAPI_NOTOPERATIVE : The received response message indicated that

processing could not be performed.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
EAPI_SEC_ERROR : A secure communication error (authentication error)

occurred.
(7) Notes

- When “res” is set to true with the “timeout” value set at 0, a return occurs
immediately without waiting for a response. However, the response can be obtained
in the form of a notification event. This should be used when the program performs
a process to receive a response asynchronously with respect to a request
transmission to a destination node.

5-46

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

- If two or more requests issued to the same object/same property are processed by
the same object, the results are not guaranteed. In such a case, the obtained response
messages are identical to each other and cannot be identified by the API.

- If the remote object returns a normal response message after a timeout, a
notification event will be returned to the application. To allow the application to
receive such a notification event, however, it is necessary to register a call listener
beforehand with EN_Node.addNotifyEventListener.

- For an EN_Object that is set for “timeout (! = 0)” to wait for a response, the
response is returned to the method. For an event triggered by such a response,
however, the response is returned to all EN_Objects (of the same application). No
distribution of the same object takes place, except for a return of the response to the
method, even when listener registration is completed.

5-47

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.18 delMProperty
(1) Name
delMProperty Array-type property deletion request
(2) Function
 Executes the service for deleting an array-type property element for an ECHONET

object.
(3) Syntaxes
 Syntax 1:
 public void delMProperty (

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
boolean res, //True when a response is required
long timeout //Timeout time

) throws EN_Exception;
 Syntax 2:
 public void delMProperty (

int EPC, //EPC
int elementNo, //Array element number
boolean res, //True when a response is required

) throws EN_Exception;
 Syntax 3:
 public void delMProperty (

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
boolean res, //True when a response is required
long timeout //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 4:
 public void delMProperty (

int EPC, //EPC
int elementNo, //Array element number
boolean res, //True when a response is required
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;

5-48

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(4) Explanation
 This method is used to delete an element for a remote ECHONET object array

property.
 Use “elementNo” to specify the property array element position for element deletion.
 Syntax 1 is used to create an ECHONET message with the transmission source object

specified.
 Syntax 2 is used to create an ECHONET message without specifying the transmission

source object.
 Syntaxes 3 and 4 provide for the use of secure communications.

(a) When “this” address is for a remote application, a message will be issued to that
remote application. When the “res” argument is true, a response will be awaited.
In such a case, SEA and SEOJ are created from “sourceObject”, and DEA and
DEOJ are created from “this”. However, if “this” address is for a broadcast
(including a case in which the object instance code = 0), a response will not be
awaited. If the remote application is within the same node, the mounting
specification determines whether or not to deliver the message to a network.

(b) When the operation is to be performed for a local ECHONET object,
this.callbackDelMyPropertyMember will be called. The argument for
callbackDelMyPropertyMember is created in the same manner as indicated under
(a).

(c) When the “timeout” value is 0 or when syntax 2 is used, a response will not be
awaited. In this case, however, the response can be acquired in the form of a
notification event. For the reception of such a notification event, however, it is
necessary that the application register a call listener beforehand with
EN_Node.addNotifyEventListener, which is described below.

sourceObject Specifies the transmission source object (that is, the local ECHONET
object).

EPC EPC value (Part 2, Section 4.2.7).
elementNo Element number of the array element to be deleted.
res Select “true” when a response is required.
timeout Timeout time in milliseconds. A setting between 0 and 20000 can be

selected. Note, however, that the actual measurement time depends
on the processing system employed. The value 0 must be selected for
a broadcast. Even if a timeout time setting other than 0 is selected for
a broadcast, processing will be performed at a setting of 0.

secopt Secure communication option.
(5) Return code
 None

5-49

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(6) Exceptions
EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_NORESOURCE : The transmission was not acceptable because the send

buffer was full.
EAPI_TIMEOUT : A timeout occurred.
EAPI_NOTSEND : Some data was not transmitted because of an unknown

error.
EAPI_NOTOPERATIVE : The received response message indicated that

processing could not be performed.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
EAPI_SEC_ERROR : A secure communication error (authentication error)

occurred.
(7) Notes

- When “res” is set to true with the “timeout” value set at 0, a return occurs
immediately without waiting for a response. However, the response can be obtained
in the form of a notification event. This should be used when the program performs
a process to receive a response asynchronously with respect to a request
transmission to a destination node.

- If two or more requests issued to the same object/same property are processed by
the same object, the results are not guaranteed. In such a case, the obtained response
messages are identical to each other and cannot be identified by the API.

- If the remote object returns a normal response message after a timeout, a
notification event will be returned to the application. To allow the application to
receive such a notification event, however, it is necessary to register a call listener
beforehand with EN_Node.addNotifyEventListener.

- When the “timeout” value is set to 0, a return occurs immediately without waiting
for a response. However, the response can be obtained in the form of a notification
event. This should be used when the program performs a process to receive a
response asynchronously with respect to a request transmission to a destination
node.

- For an EN_Object that is set for “timeout (! = 0)” to wait for a response, the
response is returned to the method. For an event triggered by such a response,
however, the response is returned to all EN_Objects (of the same application). No
distribution of the same object takes place, except for a return of the response to the
method, even when listener registration is completed.

5-50

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.19 checkMProperty
(1) Name
checkMProperty Array-type property existence check request
(2) Function
 Executes the service for checking whether or not an array-type property element

having a specified element number exists in an ECHONET object.
(3) Syntaxes
 Syntax 1:
 public boolean checkMProperty (

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
long timeout //Timeout time

) throws EN_Exception;
 Syntax 2:
 public boolean checkMProperty (

int EPC, //EPC
int elementNo, //Array element number

) throws EN_Exception;
 Syntax 3:
 public boolean checkMProperty (

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
long timeout //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 4:
 public boolean checkMProperty (

int EPC, //EPC
int elementNo, //Array element number
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
(4) Explanation
 This method is used to check for an element of the remote ECHONET object’s array

property.
 Use “elementNo” to specify the property array element position for element existence

checkout.
 Syntax 1 is used to create an ECHONET message with the transmission source object

specified.

5-51

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 Syntax 2 is used to create an ECHONET message without specifying the transmission
source object.

 Syntaxes 3 and 4 provide for the use of secure communications.
(a) When “this” address is for a remote application, a message will be issued to that

remote application. When the “res” argument is true, a response will be awaited.
In such a case, SEA and SEOJ are created from “sourceObject”, and DEA and
DEOJ are created from “this”. However, if “this” address is for a broadcast
(including a case in which the object instance code = 0), a response will not be
awaited. If the remote application is within the same node, the mounting
specification determines whether or not to deliver the message to a network.

(b) When the operation is to be performed for a local ECHONET object,
this.callbackCheckMyPropertyMember will be called. The argument for
callbackCheckMyPropertyMember is created in the same manner as indicated
under (a).

(c) When the “timeout” value is 0 or when syntax 2 is used, a response will not be
awaited. In this case, however, the response can be acquired in the form of a
notification event. For the reception of such a notification event, however, it is
necessary that the application register a call listener beforehand with
EN_Node.addNotifyEventListener, which is described below.

sourceObject Specifies the transmission source object (that is, the local ECHONET
object).

EPC EPC value (Part 2, Section 4.2.7).
elementNo Element number of the array element whose existence is to be

checked.
timeout Timeout time in milliseconds. A setting between 0 and 20000 can be

selected. Note, however, that the actual measurement time depends
on the processing system employed. The value 0 must be selected for
a broadcast. Even if a timeout time setting other than 0 is selected for
a broadcast, processing will be performed at a setting of 0.

secopt Secure communication option.
(5) Return code
 The return code indicates whether or not the property to be checked exists. True is

returned if it exists, and false is returned if it does not exist. False is returned when
“timeout” is set to 0 or when syntax 2 is used.

(6) Exceptions
EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_NORESOURCE : The transmission was not acceptable because the send

buffer was full.
EAPI_TIMEOUT : A timeout occurred.

5-52

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

EAPI_NOTSEND : Some data was not transmitted because of an unknown
error.

EAPI_NOTOPERATIVE : The received response message indicated that
processing could not be performed.

EAPI_ETC_ERROR : The encountered error is minor and can be recovered
through retries.

EAPI_SEC_ERROR : A secure communication error (authentication error)
occurred.

(7) Notes
- If two or more requests issued to the same object/same property are processed by

the same object, the results are not guaranteed. In such a case, the obtained response
messages are identical to each other and cannot be identified by the API.

- When only one value is explicitly specified as “this” address (when a broadcast is
not intended), the return code indicates whether or not the element exists.

- If the remote object returns a normal response message after a timeout, a
notification event will be returned to the application. To allow the application to
receive such a notification event, however, it is necessary to register a call listener
beforehand with EN_Node.addNotifyEventListener.

- When the “timeout” value is set to 0, a return occurs immediately without waiting
for a response. However, the response can be obtained in the form of a notification
event. This should be used when the program performs a process to receive a
response asynchronously with respect to a request transmission to a destination
node.

- For an EN_Object that is set for “timeout (! = 0)” to wait for a response, the
response is returned to the method. For an event triggered by such a response,
however, the response is returned to all EN_Objects (of the same application). No
distribution of the same object takes place, except for a return of the response to the
method, even when listener registration is completed.

5-53

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.20 addMSProperty
(1) Name
addMSProperty Requesting an array-type property addition without specifying

the element
(2) Function
 Executes the service for adding an array-type property element to an ECHONET

object. The remote object process determines what element number will be targeted
for an element addition.

(3) Syntaxes
 Syntax 1:
 public int addMSProperty (

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
EN_Property p, //Property value
boolean res, //True when a response is required
long timeout //Timeout time

) throws EN_Exception;
 Syntax 2:
 public int addMSProperty (

int EPC, //EPC
EN_Property p, //Property value
boolean res, //True when a response is required

) throws EN_Exception;
 Syntax 3:
 public int addMSProperty (

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
EN_Property p, //Property value
boolean res, //True when a response is required
long timeout //Timeout time
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 4:
 public int addMSProperty (

int EPC, //EPC
EN_Property p, //Property value
boolean res, //True when a response is required
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;

5-54

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(4) Explanation
 This method is used to add an element to an arbitrary position of a remote ECHONET

object array property.
 Use “p” to specify the property element to be added.
 Syntax 1 is used to create an ECHONET message with the transmission source object

specified.
 Syntax 2 is used to create an ECHONET message without specifying the transmission

source object.
 Syntaxes 3 and 4 provide for the use of secure communications.

(a) When “this” address is for a remote application, a message will be issued to that
remote application. When the “res” argument is true, a response will be awaited.
In such a case, SEA and SEOJ are created from “sourceObject”, and DEA and
DEOJ are created from “this”. However, if “this” address is for a broadcast
(including cases in which the object instance code = 0), a response will not be
awaited. If the remote application is within the same node, the mounting
specification determines whether or not to deliver the message to a network.

(b) When the operation is to be performed for a local ECHONET object,
this.callbackAddMyPropertyMember will be called. The argument for
callbackAddMyPropertyMember is created in the same manner as indicated
under (a).

(c) When the “timeout” value is set to 0 or when syntax 2 is used, a response will not
be awaited. In this case, however, the response can be obtained in the form of a
notification event.

sourceObject Specifies the transmission source object (that is, the local ECHONET
object).

EPC EPC value (Part 2, Section 4.2.7).
p Property value to be added.
res Select “true” when a response is required.
timeout Timeout time in milliseconds. A setting between 0 and 20000 can be

selected. Note, however, that the actual measurement time depends
on the processing system employed. The value 0 must be selected for
a broadcast. Even if a timeout time setting other than 0 is selected for
a broadcast, processing will be performed at a setting of 0.

secopt Secure communication option.
(5) Return code
 Element number of the element added. The value -1 is returned when “timeout” = 0

in syntax 1 or when syntax 2 is used. If “false” is selected for “res”, the value 1 is
returned.

5-55

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(6) Exceptions
EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_NORESOURCE : The transmission was not acceptable because the send

buffer was full.
EAPI_TIMEOUT : A timeout occurred.
EAPI_NOTSEND : Some data was not transmitted because of an unknown

error.
EAPI_NOTOPERATIVE : The received response message indicated that

processing could not be performed.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
EAPI_SEC_ERROR : A secure communication error (authentication error)

occurred.
(7) Notes

- When “res” is set to true with the “timeout” value set at 0, a return occurs
immediately without waiting for a response. However, the response can be obtained
in the form of a notification event. This should be used when the program performs
a process to receive a response asynchronously with respect to a request
transmission to a destination node.

- If two or more requests issued to the same object/same property are processed by the
same object, the results are not guaranteed. In this case, the API is unable to
differentiate the response messages as they are the same.

- When a single “this” address is explicitly specified (when not broadcasting), -
 When only one value is explicitly specified as “this” address (when a broadcast is
not intended), the above-mentioned code returns as a return code. If “this” is a
broadcast address (intra-domain broadcast or intra-subnet broadcast address), the
null value is returned as a return code.

- If the remote object returns a normal response message after a timeout, a
notification event will be returned to the application. To allow the application to
receive such a notification event, however, it is necessary to register a call listener
beforehand with EN_Node.addNotifyEventListener.

- For an EN_Object that is set for “timeout (! = 0)” to wait for a response, the
response is returned to the method. For an event triggered by such a response,
however, the response is returned to all EN_Objects (of the same application). No
distribution of the same object takes place, except for a return of the response to the
method, even when listener registration is completed.

5-56

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.21 infPropertyMember
(1) Name
infPropertyMember Array-type property notification request
(2) Function
 Causes the application to issue a notification message about an array-type property

element value.
(3) Syntaxes
 Syntax 1:
 public void infPropertyMember (

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number

) throws EN_Exception;
 Syntax 2:
 public void infPropertyMember (

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
EN_Property p, //Property value

) throws EN_Exception;
 Syntax 3:
 public void infPropertyMember (

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 4:
 public void infPropertyMember (

EN_Object sourceObject, //Transmission source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
EN_Property p, //Property value
EN_SecureOpt secopt //Secure communication option

) throws EN_Exception;
 Syntax 5:
 public void infPropertyMember (

EN_Object sourceObject, // Sending source ECHONET object
int EPC, //EPC
int elementNo, //Array element number

5-57

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

boolean res, // true if a response is needed
long timeout, //Timeout time

) throws EN_Exception;
 Syntax 6:
 public void infPropertyMember (

EN_Object sourceObject, //Sending source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
EN_Property p, //Property
boolean res, // true if a response is needed
long timeout, // Timeout time

) throws EN_Exception;

 Syntax 7:
 public void infPropertyMember (

EN_Object sourceObject, // Sending source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
boolean res, // true if a response is needed
long timeout, //Timeout time
En_SecureOpt tsecopt //Secure communication option

) throws EN_Exception;
 Syntax 8:
 public void infPropertyMember (

EN_Object sourceObject, // Sending source ECHONET object
int EPC, //EPC
int elementNo, //Array element number
EN_Property p, //Property
boolean res, // true if a response is needed
long timeout, //Timeout time
En_SecureOpt tsecopt //Secure communication option

) throws EN_Exception;

(4) Explanation
 Issues a notification message from the application. This issuance includes a state

transition announcement to be made when the property element specified by an array
element number changes its status and a property value notification to be transmitted
at regular intervals.

5-58

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 This method supports four syntaxes.
 When syntax 1 is used, SEA and SEOJ of the message are created from

“sourceObject”, and DEA is created from “this”. For EDT, the API calls the
sourceObject.callbackReadMyProperty method and uses its return value; therefore,
callbackReadMyProperty must be mounted for sourceObject.

 When syntax 2 is used, the message’s SEA and SEOJ are created from “sourceObject”,
and DEA is created from “this”. Further, EDT is created from EPC, elementNo, and p.

 It is presumed that syntax 1 will be used for periodic property value notification.
Therefore, the application does not have to furnish an argument as the property value
each time it is needed. On the other hand, syntax 2 is organized on the assumption that
it will be used for reporting a property value when application status changes.
Therefore, the property value to be reported is to be set as the argument. Syntaxes 3
and 4 provide for the use of secure communications.
sourceObject Specifies the transmission source object (that is, the local ECHONET

object).
EPC EPC value (Part 2, Section 4.2.7).
elementNo Element number of the property array element to be reported.
p Property value to be reported.

timeout A timeout time can be specified between 0 and 20000 in millisecond
units. However, the timeout time to be actually measured will
depend on the processing system. 0 should be specified for a
broadcast or broadcast notification request. In this case, even if a
value other than 0 is specified, the timeout time will be treated as 0.

secopt Secure communication option.
(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_NORESOURCE : The transmission was not acceptable because the send

buffer was full.
EAPI_TIMEOUT : Timeout
EAPI_NOTSEND : Unsent data exists due to an unknown error.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
(7) Notes

- Nothing occurs if callbackReadMyProperty generates an exception during the use
of syntax 1.

- DEOJ is not to be attached to messages except for individual notifications.

5-59

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.22 callbackAddMyPropertyMember
(1) Name
callbackAddMyPropertyMember

Array-type property value addition (with the element specified) service
mounting

(2) Function
 Adds a specified array-type property element to a local ECHONET object.
(3) Syntaxes
 Syntax 1:
 public boolean callbackAddMyPropertyMember (

EN_Packet ev //Details of a generated event
) throws EN_Exception;
(4) Explanation
 To prepare for a call from the API, the application must describe the process for this

method. The application must furnish under the specified name and override the
method describing the process to be performed when an array-type property element
addition request (with the element specified) is received in relation to a local
ECHONET object. This method is called when an AddMI or AddMC service request
is received in relation to this ECHONET object.

 If processing cannot be performed or the application has not completed an override,
the API generates the EAPI_NOTACCEPT exception.

 When the above exception occurs, the API returns a response message to the service
request source to indicate that processing cannot be performed.

(5) Return code
 Returns “true” under normal conditions. When “false” is returned, response message

issuance will be inhibited.
(6) Exceptions
EAPI_NOTACCEPT : The property to be processed was not found. A

non-array element property was encountered. The array element to be
processed was not found. Or, the application has not completed an
override.

(7) Notes
- The method overridden should terminate as soon as possible. When the API uses

this method to pass EN_Packet to the application, the EN_Packet contains an
EN_Object type sourceObject and destinationObject. However, the application
must not use them for purposes other than acquiring EA/EOJ information for the
transmission source or transmission destination.

5-60

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.23 callbackDelMyPropertyMember
(1) Name
callbackDelMyPropertyMember

Array-type property value deletion service mounting
(2) Function
 Deletes an array-type property value for a local ECHONET object.
(3) Syntaxes
 public boolean callbackDelMyPropertyMember (

EN_Packet ev //Details of a generated event
) throws EN_Exception;
(4) Explanation
 To prepare for a call from the API, the application must describe the process for this

method. The application must furnish under the specified name and override the
method describing the process to be performed when an array-type property value
deletion request is received in relation to a local ECHONET object. This method is
called when a DelMI or DelMC service request is received in relation to this
ECHONET object.

 If processing cannot be performed or the application has not completed an override,
the API generates the EAPI_NOTACCEPT exception.

 When the above exception occurs, the API returns a response message to the service
request source to indicate that processing cannot be performed.

(5) Return code
 Returns “true” under normal conditions. When “false” is returned, response message

issuance will be inhibited.
(6) Exceptions
EAPI_NOTACCEPT : The property to be processed was not found. A

non-array element property was encountered. The array element to be
processed was not found. Or, the application has not completed an
override.

(7) Notes
- The method overridden should terminate as soon as possible. When the API uses

this method to pass EN_Packet to the application, the EN_Packet contains an
EN_Object type sourceObject and destinationObject. However, the application
must not use them for purposes other than acquiring EA/EOJ information for the
transmission source or transmission destination.

5-61

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.24 callbackCheckMyPropertyMember
(1) Name
callbackCheckMyPropertyMember

Array-type property value existence check service mounting
(2) Function
 Checks whether or not an array-type property element exists in a local ECHONET

object.
(3) Syntaxes
 public boolean callbackCheckMyPropertyMember (

EN_Packet ev //Details of a generated event
) throws EN_Exception;
(4) Explanation
 To prepare for a call from the API, the application must describe the process for this

method. The application must furnish under the specified name and override the
method describing the process to be performed when an array-type property element
existence check request is received in relation to a local ECHONET object. This
method is called when a CheckM service request is received in relation to this
ECHONET object.

 If processing cannot be performed or the application has not completed an override,
the API generates the EAPI_NOTACCEPT exception.

 When the above exception occurs, the API returns a response message to the service
request source to indicate that processing cannot be performed.

(5) Return code
 Returns “true” if the specified element exists, otherwise returns “false”.
(6) Exceptions
EAPI_NOTACCEPT : The property to be processed was not found. A

non-array element property was encountered. The array element to be
processed was not found. Or, the application has not completed an
override.

(7) Notes
- The method overridden should terminate as soon as possible. When the API uses

this method to pass EN_Packet to the application, the EN_Packet contains an
EN_Object type sourceObject and destinationObject. However, the application
must not use them for purposes other than acquiring EA/EOJ information for the
transmission source or transmission destination.

5-62

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.1.25 callbackAddMyPropertyMemberAlt
(1) Name
callbackAddMyPropertyMemberAlt

- Installation of service to add array property value to
any element No.

(2) Function
 Adds an array-type property value to a local ECHONET object. However, the element

number of the property value addition position depends on the ECHONET object
mounting specification for the destination ECHONET node processing the property
value addition.

(3) Syntaxes
 public boolean callbackAddMyPropertyMemberAlt (

EN_Packet ev //Details of a generated event
) throws EN_Exception;

(4) Explanation
 To prepare for a call from the API, the application must describe the process for this

method. The application must furnish under the specified name and override the
method describing the process to be performed when an array-type property value
addition request is received in relation to a local ECHONET object. This method is
called when an AddMSI or AddMSC service request is received in relation to this
ECHONET object.

 The element number of the added element returns to the “ev”-specified elementNo.
 If processing cannot be performed or the application has not completed an override,

the API generates the EAPI_NOTACCEPT exception.
 When this exception occurs, the API returns a response message to the service request

source to indicate that processing cannot be performed.
(5) Return code
 Returns “true” under normal conditions. When “false” is returned, response message

issuance will be inhibited. The element number of the added element returns to the
elementNo specified by the “ev” argument.

(6) Exceptions
EAPI_NOTACCEPT : The property to be processed was not found. A

non-array element property was encountered. The array element to be
processed was not found. Or, the application has not completed an
override.

(7) Notes
- The method overridden should terminate as soon as possible.
- When the API uses this method to pass EN_Packet to the application, the

EN_Packet contains an EN_Object type sourceObject and destinationObject.
However, the application must not use them for purposes other than acquiring

5-63

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

EA/EOJ information for the transmission source or transmission destination.

5-64

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2 EN_Node class
(1) Name
EN_Node ECHONET node and event management
(2) Function
 This class manages events arriving at the local node. The application must create only

one instance of this class.
 When an event arrives at the local node, it is linked to a class prepared by the

application. Because of this mechanism, the application merely has to describe the
operation that is to be performed on a property.

(3) Syntaxes
 public class EN_Node extends Object

implements EN_Const;

5-65

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2.1 EN_Node
(1) Name
EN_Node ECHONET node constructor
(2) Function
 Initializes and starts an ECHONET node/event management function.
(3) Syntaxes
 public EN_Node();
(4) Explanation
 Connects to and manages the ECHONET Communication Middleware.
 Creates a thread (event thread) that executes an event dispatch loop for an event wait.

When an event occurs, the event thread calls a specific method associated with the
event. When the associated process ends, the event thread waits again for an event.

 When started, the application must create only one instance of EN_Node.
(5) Return code
 None
(6) Exceptions
 None
(7) Notes

- The API does not process the next event until the method called because of an event
occurrence terminates. Therefore, the application need not write an event
processing method in a reentrant.

5-66

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2.2 getEA
(1) Name
getEA Local node ECHONET address acquisition
(2) Function
 Returns the ECHONET address of the local node.
(3) Syntaxes
 public int getEA() throws EN_Exception;
(4) Explanation
 Returns the local node ECHONET address.
(5) Return code
 Local node ECHONET address. Only two low-order bytes are used.
(6) Exceptions
EAPI_NOTOPEN : A call was issued before requestStart() completion.
(7) Notes
 None

5-67

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2.3 addPropertyEventListener
(1) Name
addPropertyEventListener

Property value event listener registration
(2) Function
 Registers a listener object that is to be called when a remote node issues a request for

local ECHONET object property acquisition/setup (property value event).
(3) Syntaxes
 public void addPropertyEventListener(

EN_EventListener listener //Listener object to be registered
) throws EN_Eception;
(4) Explanation
 Registers a listener object that is to be called when a remote node issues a request for

local ECHONET object property acquisition/setup (property value event). At the time
of registration, the API calls listener.getEOJ() to determine the event to be linked.
When the event occurs, a search is conducted to locate the “listener” equal to the value
that the event DEOJ has acquired with getEOJ(). The selected access rule is then
referenced. When access is granted, listener.callbackWriteMyProperty() or
listener.callbackReadMyProperty() is called. Eventually, a response message is
transmitted as needed.

 If “listener” is not a local ECHONET object (the decision is made based on
listener.getEA()), an exception occurs.

(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_NORESOURCE : Registration could not be completed.
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
(7) Notes

- If the same ECHONET object code is registered two or more times, the last
registration takes effect. Only one ECHONET object code can be registered at a
time. If an EN_Object having the same EA and EOJ is registered two or more times,
only the EN_Object registered last takes effect.

5-68

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2.4 delPropertyEventListener
(1) Name
delPropertyEventListener

 Property value event listener deletion
(2) Function
 Deletes a registered listener object.
(3) Syntaxes
 public void delPropertyEventListener (

EN_EventListener listener //Listener object to be deleted
) throws EN_Exception;
(4) Explanation
 Deletes a listener object registered by addPropertyEventListener.
 If the listener is not a local ECHONET object (the decision is made based on

listener.getEA()), an exception occurs. An exception also occurs if the specified
listener object is not registered.

(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart()
completion.

EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_NOTARGET : The target listener was not registered.
EAPI_ETC_ERROR : The encountered error is minor and can be

recovered through retries.
(7) Notes
 None

5-69

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2.5 addNotifyEventListener
(1) Name
addNotifyEventListener Notification event listener registration
(2) Function
 Registers a listener object that is to be called at the time of a status change

announcement from a remote application, a periodic notification, or an event
(notification event) generation for responding to a broadcast request. An event will be
linked by a transmission source object code.

(3) Syntaxes
 public void addNotifyEventListener (

EN_EventListener listener //Listener object to be deleted
) throws EN_Exception;
(4) Explanation
 Registers a listener object that is to be called at the time of a status change

announcement from a remote application, a periodic notification, or an event
(notification event) generation for responding to a broadcast request. Upon
registration, the API calls listener.getEA() and listener.getEOJ() to determine the
event to be linked.

 When an event having SEA and SEOJ occurs, the API searches for the associated
listener in the order explained below, and then calls listener.callbackNotifyEvent() for
the associated listener. (Note that getEA() and getEOJ() are executed only once at the
time of registration. The method call form is used for explanation purposes. The call
will not be issued multiple times.)

 Two types of listeners can be registered. One is for explicitly specifying the local EA
and EOJ. It registers the method that will always be called when the EA and EOJ are
contained in a received message’s DEA and DEOJ. This type is called an “individual
listener”. The other type specifies the transmission source to be targeted for reception.
Its registration takes the form of a broadcast address. It registers the method that will
be called when a received message’s SEA and SEOJ are contained in the registered
broadcast address (intra-domain broadcast or intra-subnet broadcast address). This
type is called a “broadcast listener”. If “listener” is not a local ECHONET object (the
decision is made based on listener.getEA()), an exception occurs.

 The call listener search logic is described below:

 (Search step 1) All registered individual listeners are checked to determine whether or

not EA and EOJ are contained in the received message’s DEA and DEOJ. When they
are contained, the associated listener is called. If an intra-domain/intra-subnet
broadcast address is stored in the received message’s DEA, it is checked to determine
whether or not it is within the broadcast range. If the DEOJ in the received message is
an instance broadcast, the conditions for the registered listener are also checked to
determine whether or not they are within the broadcast range.

5-70

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

 If two or more registered listeners comply with the conditions imposed by a single
message reception, all of them are called. If, for instance, three objects (controller
instance 1, controller instance 2, and controller instance 3) are mounted and a listener
is registered for each instance, all three listeners are called when an instance broadcast
message addressed to an air conditioner object is received.

 Next, a listener satisfying the “getEA() = SEA and getEOJ() = SEOJ” conditions is
searched for. When the associated listener is found and called, the process skips to
search step 5. If not, the process proceeds to search step 2.

 (Search step 2) A listener whose getEA() is equal to SEA, getEOJ() and SEOJ are

equal in object class group and object class code, and getEOJ() instance code is 0 is
called. The process then proceeds to search step 3.

 (Search step 3) A listener having a getEA() that serves as a broadcast address

(intra-domain or intra-subnet broadcast address), containing an SEA, and having a
getEOJ() equal to SEOJ is called. If the associated listener is found and called, the
process skips to search step 5. If not, the process proceeds to search step 4.

 (Search step 4) A listener having a getEA() that serves as a broadcast address

(intra-domain or intra-subnet broadcast address), containing an SEA, having getEOJ()
and SEOJ that are equal in object class group and object class code, and retaining a
getEOJ() instance code of 0 is called. The process then proceeds to search step 5.

 (Search step 5) A listener whose get EOJ() is a wildcard code.
 Note: The call of a listener providing a wildcard code is a function implemented for

applications that receive all object messages within the system.
(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart()
completion.

EAPI_NORESOURCE : An illegal argument was used.
EAPI_ILLEGAL_PARAM : The target listener was not registered.
EAPI_ETC_ERROR : The encountered error is minor and can be

recovered through retries.
(7) Notes

- If the same ECHONET object code is registered two or more times, the last
registration takes effect. Only one ECHONET object code can be registered at a
time. If an EN_Object having the same EA and EOJ is registered two or more times,
only the EN_Object registered last takes effect.

5-71

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2.6 delNotifyEventListener
(1) Name
delNotifyEventListener Notification event listener deletion
(2) Function
 Deletes a listener object that is called at the time of a status change announcement

from a remote application, a periodic notification, or an event (notification event)
generation for responding to a broadcast request.

(3) Syntaxes
 public void delNotifyEventListener(

EN_EventListener listener //Listener object to be deleted
) throws EN_Exception;
(4) Explanation
 Deletes a listener object registered by addNotifyEventListener. Since listener.getEA()

and listener.getEOJ() were called at the time of registration to determine the event to
be linked, all associated information will also be deleted.

 To change the event to be linked to the listener object without deleting the listener
object, first delete with delNotifyEventListener and then re-register the listener object.

 If the listener is not a local ECHONET object (the decision is made based on
listener.getEA()), an exception occurs. An exception also occurs if the specified
listener object is not registered.

(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_NOTARGET : The target listener was not registered.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
(7) Notes
 None

5-72

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2.7 addNotifyErrorEventListener
(1) Name
addNotifyErrorEventListener

Error notification event listener registration
(2) Function
 Registers a listener object for a fatal error notification event.
(3) Syntaxes
 public void addNotifyErrorEventListener(

EN_EventListener listener //Listener object to be deleted
) throws EN_Exception;
(4) Explanation
 Registers a listener object that is to be called for the notification of a fatal error

occurring in the ECHONET Communication Middleware or ECHONET lower-layer
communication software.

 When a fatal error occurs, the API calls listener.callbackNotifyError() for the
associated listener.

 If the listener is not a local ECHONET object (the decision is made based on
listener.getEA()), the EAPI_ILLEGAL_PARAM exception occurs.

(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_NORESOURCE : An illegal argument was used.
EAPI_ILLEGAL_PARAM : The target listener was not registered.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
(7) Notes

- If the same ECHONET object code is registered two or more times, the last
registration takes effect. Only one ECHONET object code can be registered at a
time. If an EN_Object having the same EA and EOJ is registered two or more times,
only the EN_Object registered last takes effect.

5-73

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2.8 delNotifyErrorEventListener
(1) Name
delNotifyErrorEventListener

Error notification event listener deletion
(2) Function
 Deletes a listener object that is registered as a listener for a fatal error notification

event.
(3) Syntaxes
 public void delNotifyErrorEventListener (

EN_EventListener listener //Listener object to be deleted
) throws EN_Exception;
(4) Explanation
 Deletes a listener object that is registered by addNotifyErrorEventListener.
 If the listener is not a local ECHONET object (the decision is made based on

listener.getEA()), an exception occurs. An exception also occurs if the specified
listener object is not registered.

(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_NOTARGET : The target listener was not registered.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
(7) Notes
 None

5-74

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2.9 end
(1) Name
end Application end notification
(2) Function
 When application software calls this method before exiting, the resources managed by

the API for the application software are freed.
(3) Syntaxes
 public void end (
) throws EN_Exception;
(4) Explanation
 This method does not signify the end of ECHONET Communication Middleware or

ECHONET lower-layer communication software.
(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
(7) Notes
 None

5-75

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2.10 notifyTrouble
(1) Name
notifyTrouble Trouble notification
(2) Function
 Notifies the ECHONET Communication Middleware of application software trouble.

Upon receipt of this notification, the ECHONET Communication Middleware retains
the application software trouble.

(3) Syntaxes
 public void notifyTrouble (

int Trouble //Trouble description (trouble
occurrence/trouble elimination)

) throws EN_Exception;
(4) Explanation
 The trouble specified by “Trouble” will be reported as needed to the middleware.
 Trouble: Trouble number.

MID_STS_NO_ERR Trouble is cleared.
MID_STS_APL_ERR Application software status is abnormal.

(5) Return code
 None
(6) Exceptions

EAPI_NOTOPEN : A call was issued before requestStart() completion.
EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
(7) Notes
 None

5-76

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2.11 requestInit
(1) Name
requestInit Initialization request
(2) Function
 Requests that the ECHONET Communication Middleware and lower-layer

communication software effect initialization.
(3) Syntaxes
 public boolean requestInit (

int StartType //Initialization parameter
) throws EN_Exception;
(4) Explanation
 This method invokes a status change in the ECHONET Communication Middleware

at a node. It is assumed that this method will be used by management applications.
 The initialization parameter can be used to specify the startup type.
 StartType: Startup type.

MID_WARM_START Warm start
MID_COLD_START Cold start

(5) Return code
 Returns true if initialization is successfully effected, otherwise returns false.
(6) Exceptions

EAPI_ILLEGAL_PARAM : An illegal argument was used.
EAPI_ETC_ERROR : The encountered error is minor and can be recovered

through retries.
EAPI_ALREADYOPEN : Already running (the requestStart() and preceding

steps are completed).
EAPI_ALREADYINIT : Already initialized (requestInit() is completed but

requestStart() is not yet issued).
(7) Notes
 None

5-77

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.2.12 requestStart
(1) Name
requestStart Start request
(2) Function
 Requests that the ECHONET Communication Middleware and lower-layer

communication software start.
(3) Syntaxes
 public boolean requestStart (
) throws EN_Exception;
(4) Explanation
 This method invokes a status change in the ECHONET Communication Middleware

at a node. It is assumed that this mehod will be used by management applications.
(5) Return code
 Returns true if startup is successfully completed and returns false otherwise.
(6) Exceptions

EAPI_ETC_ERROR : The encountered error is minor and can be recovered
through retries.

EAPI_ALREADYOPEN : Already running (the requestStart() and preceding steps
are completed).

EAPI_NOTINIT : Not initialized (requestStart() was called without
executing requestInit() at all).

(7) Notes
 None

5-78

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.3 EN_Property class
(1) Name
EN_Property Property wrapper class
(2) Function
 Retains a property-indicating message byte string EDT (Part 2, Section 4.2.9), creates

its value with a “byte” or “int”, and offers a method for referencing.
 The value is to be set by a constructor and retrieved by a method whose name begins

with “get”.
(3) Syntaxes
 public class EN_Property extends Object;
(4) Explanation
 Although the method for handling a raw EDT is internally required, it will not be

stipulated here.

5-79

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.3.1 EN_Property
(1) Name
EN_Property Property constructor
(2) Function
 Creates a property.
(3) Syntaxes
 Syntax 1: public EN_Property(byte b);
 Syntax 2: public EN_Property(short s);
 Syntax 3: public EN_Property(int i);
 Syntax 4: public EN_Property(int m,int size)

throws EN_Eception;
 Syntax 5: public EN_Property(long l);
 Syntax 6: public EN_Property(long m,int size)

throws EN_Eception;
 Syntax 7 public EN_Property(String st);
 Syntax 8: public EN_Property(byte ba[]);
(4) Explanation
 Creates a message EDT from a property value and retains it. Syntaxes 4 and 6 have

data “m” and create an EDT that is “size” bytes in length. The “size” value is between
1 and 4 for syntax 4 and between 1 and 8 for syntax 6.

(5) Return code
 None
(6) Exceptions

EAPI_ILLEGAL_PARAM : An illegal argument was used (the “size” value
specified in syntax 4 or 6 was outside the acceptable
range).

(7) Notes
- When setProperty() or the like is used to set a property value for a remote

ECHONET object, the application needs to know the data type of the target
property beforehand. The application must properly construct EN_Packet to enable
the API to create a message EDT matching the data type.

5-80

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.3.2 get
(1) Name
get Property acquisition accessor
(2) Function
 Accessor that acquires a property value.
(3) Syntaxes
 Syntax 1: public byte getByte(byte b) throws EN_Exception;
 Syntax 2: public short getShort() throws EN_Exception;
 Syntax 3: public int getInt() throws EN_Exception;
 Syntax 4: public long getLong() throws EN_Exception;
 Syntax 5: public short getShortU() throws EN_Exception;
 Syntax 6: public int getIntU() throws EN_Exception;
 Syntax 7: public long getLongU() throws EN_Exception;
 Syntax 8: public String getString() throws EN_Exception;
 Syntax 9: public byte[] getByteArray() throws
 EN_Exception;
(4) Explanation
 Accessor for property value acquisition. Forcibly converts the retained data into a

requested type and then returns it. To acquire property value, a method whose name
ends with the letter “U” converts the data retained by EN_Property, treating it as
unsigned data.

 When the value is of byte type and treated as unsigned, it cannot be expressed by
“byte” in Java language; therefore, getByte() does not exist.

 The conversion rules are stated below:
- The API assumes that the length of the data retained by EDT is equal to the overall

length, forms an interpretation in accordance with the signed/unsigned judgment
result, places the interpretation result in the requested type, and returns it.

- For signed data whose most significant bit is set, the EAPI_ILLEGAL_TYPE is
generated in regard to a request for acquiring a type whose size is smaller than that
of the type expressed by the original size. For an acquisition request specifying a
type whose size is not smaller than that of the type expressed by the original size,
the evaluation result of the original size (negative value) is returned after being
placed (as a value) in a requested type (case (A) below).

5-81

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

- For unsigned data, an unsigned integer, which is expressed by adding 0 to the byte
string high order of the conversion source, is generally placed in a specified size
and type (as a value) before being returned. The EAPI_ILLEGAL_TYPE exception
is generated in regard to a request for acquiring a type with a size equal to or smaller
than that of the type expressed by the original size. Further, if the acquisition
request relates to a type with a size greater than that of the type expressed by the
original size, the evaluation result obtained after “0x00” addition to the high order
is complied with.

Example) {0x01, 0x02} --(getInt)--> 0x00000102
 {0x80} --(getByte) --> (byte)-128
 {0x80} --(getShortU)--> (short)128
 {0x80} --(getShort)--> (short)-128 (0x80: equal to -128 in byte form)
 {0x80, 0x00} --(getByte) --> Exception
 {0x80, 0x00} --(getShortU)--> Exception (cannot be expressed by a

short type in Java language)
 {0x80, 0x00} --(getShort) --> -32768
 {0x80, 0x00} --(getIntU)--> 32768
 {0x80, 0x00} --(getInt) --> -32768
 {0x80, 0x00, 0x00} --(getIntU)--> 8388608
 {0x80, 0x00, 0x00} --(getInt) --> -8388608 ----(A)
 #However, it is assumed that {0x80, 0x00, 0x00} is generated under

the “int, size = 3” condition or with a byte[].
 {0x80, 0x00, 0x00, 0x00} --(getIntU)--> Exception
 {0x80, 0x00, 0x00, 0x00} --(getInt) --> -2147483648
 {0x80, 0x00, 0x00, 0x00} --(getLongU)--> 2147483648
 {0x80, 0x00, 0x00, 0x00} --(getLong) --> -2147483648
 {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} - (getLongU)-->

Exception
 {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} - (getLong)
 --> -3458764513820540928
 {“01”} == {0x00, 0x30, 0x00, 0x31}--(getInt)--> 0x00300031 (not

(int)1)
 {“123”} == {0x00, 0x31, 0x00, 0x32, 0x00, 0x33}--(getInt)-->

Exception
 {“AB”} == {0x00, 0x41, 0x00, 0x42}--(getInt)--> 0x00410042
 {“ABC”} == {0x00, 0x41, 0x00, 0x42, 0x00, 0x43}--(getInt)-->

Exception

5-82

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

- When getString() is used, the data retained by EN_Property() is forcibly converted
to a convertible size and then returned. The remaining data is discarded. That is, the
last one byte is discarded only when an odd-numbered byte is retained.

Example) {0x00, 0x30, 0x00, 0x31} --(getString)--> “01”
 {0x00, 0x30, 0x00, 0x32, 0x00} --(getString)-->“02”

- When getByteArray() is used, the EDT byte string is returned as a byte-array type
without conversion. Therefore, success is always achieved.

(5) Return code
 Property value.
(6) Exceptions
EAPI_ILLEGAL_TYPE : An illegal type was specified.
(7) Notes

- Before referencing a property value of a remote ECHONET object with
getProperty(), the application needs to know the data type of the target property. An
appropriate syntax must be used to call the application so that the API can create a
property value of the correct type from the message EDT.

5-83

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.4 EN_Packet class
(1) Name
EN_Packet ECHONET event class
(2) Function
 This class expresses an ECHONET event.
(3) Syntaxes
 public class EN_Packet extends Object implements EN_Const

{
public EN_Object sourceObject, //Request source object
public EN_Object destinationObject, //Request destination object
public int EPC, //EPC
public int elementNo, //Array element number (-1 for a

non-array)
public EN_Property property, //Property value
public int esv //Event type

 }
(4) Explanation
sourceObject Specifies the transmission source object.
destinationObject Specifies the transmission destination object.
EPC EPC value (Part 2, Section 4.2.7).
elementNo Indicates an element number of an array-type property. The value -1 is

entered for a non-array element.
property Property. Value to be stored in the message EDT. For an array-type

property, this is the element value specified by “elementNo”.
esv Code to be stored in the message ESV. This code need not be referenced

when callbackWriteMyProperty or callbackReadMyProperty is used.
(5) Notes

- The message information (except for EDT) required internally is owned by
“private”.

5-84

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.5 EN_Exception exception class
(1) Name
EN_Exception Exception class
(2) Function
 Expresses an exception in the API.
(3) Syntaxes
 public class EN_Exception extends Exception implements

EN_Const {
public int type, //Exception type
public EN_Exception(int type) //Exception constructor

 }
(4) Explanation
 Expresses an exception in the API. If an access request to a remote application cannot

be processed, a response message is received indicating the inability to process. In this
case, an EN_Exception type exception is generated The application catches the
exception and performs a process for handling situations in which an access request
cannot be made.

 If a local ECHONET object operation cannot be performed, the application can
generate an EN_Exception type exception. The API catches the exception and issues a
response message indicating the inability to process.

(5) Notes
 None

5-85

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.6 EN_EvenListener interface
(1) Name
EN_EventListener Event listener interface
(2) Function
 Interface for an event listener.
(3) Syntaxes
 public interface EN_EventListener {

//ECHONET address acquisition
public int getEA() throws EN_Exception;
//Object code acquisition
public int getEOJ();
//Address type acquisition
public int getAddrKind();
//Access rule read
public int getAccessRule(int EPC) throws EN_Exception;
//Address inclusive relation check
public boolean isIn(EN_EventListener x);
//Property value acquisition
public EN_Property callbackReadMyProperty(EN_Packet ev)
throws EN_Exception;
//Property value setup
public boolean callbackWriteMyProperty(EN_Packet ev)
throws EN_Exception;
//Array-type property value addition
public boolean callbackAddMyPropertyMember(EN_Packet
ev) throws EN_Exception;
//Array-type property value deletion
public boolean callbackDelMyPropertyMember(EN_Packet
ev) throws EN_Exception;
//Array-type property value existence check
public boolean callbackCheckMyPropertyMember (EN_Packet
ev) throws EN_Exception;
//Array-type property value addition
public boolean callbackAddMyPropertyMemberAlt
(EN_Packet ev) throws EN_Exception;
//Notification
public void callbackNotifyEvent(EN_Packet ev) throws
EN_Exception;
//Error notification

5-86

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

public void callbackNotifyError(int errorCode) throws
EN_Exception;
}

(4) Explanation
 Interface type required for event reception. Since this interface is implemented by

EN_Object, the application need not be aware of it.
(5) Notes
 None

5-87

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.7 EN_Const interface
(1) Name
EN_Const ECHONET Basic API for Java language constant definition interface
(2) Function
 This interface offers various constants for use with the API.
(3) Syntaxes
 public interface EN_Const {

//Function return value or exception type.

//The ECHONET Communication Middleware was not initialized.
public static final int EAPI_NOTINIT = -1;
//The ECHONET Communication Middleware was already initialized.
public static final int EAPI_ALREADYINIT = -2;
//The session was not open or active (an unavailable API was called before
requestStart() completion).
public static final int EAPI_NOTOPEN = -3;
//ECHONET The ECHONET Communication Middleware was already
running.
public static final int EAPI_ALREADYOPEN = -4;
//A lower-layer communication software error occurred.
public static final int EAPI_LOW_ERROR = -10;
//A Protocol Difference Absorption Processing Block error occurred.
public static final int EAPI_PRO_ERROR = -11;
//An ECHONET Communications Processing Block error occurred.
public static final int EAPI_MID_ERROR = -12;
//Resources were temporarily insufficient (e.g., a transmission was not
acceptable because the send buffer was full).
public static final int EAPI_NORESOURCE = -20;
#An error occurred mainly due to memory insufficiency or buffer insufficiency.
Error recovery may be achieved some time later.
//Some data was not transmitted (a specified period of time elapsed before
transmission completion). The “specified period of time” value depends on
middleware mounting. The error occurrence location will not be identified. It is
not certain that error recovery can be achieved through retries.
public static final int EAPI_NOTSEND = -21;

5-88

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

//A communication timeout occurred (no response was received within the
timeout time, although a transmission was sent).
public static final int EAPI_TIMEOUT = -30;
//Control could not be exercised (when a response message indicating the
inability to process was received from a remote ECHONET object).
public static final int EAPI_NOTOPERATIVE = -31;
//An authentication error occurred (an authentication error message was
received from a remote ECHONET object).
public static final int EAPI_SEC_ERROR = -32
//The encountered error is minor and can be recovered through retries.
public static final int EAPI_ETC_ERROR = -39;
//An illegal parameter was used.
public static final int EAPI_ILLEGAL_PARAM = -40;
//The target was no found.
public static final int EAPI_NOTARGET = -41
//An illegal type was specified.
public static final int EAPI_ILLEGAL_TYPE = -42
//The process could not be performed by the ECHONET object.
public static final int EAPI_NOTACCEPT = -100;

//ID type.
public static final int APIVAL_NODE_KIND = 0;
 //Device ID.
public static final int APIVAL_EA_KIND = 1;// ECHONET
address.
public static final int APIVAL_BROAD_KIND = 2;// Broadcast.

//ESV code.
public static final int ESV_SetI = 0x60;// SetI
public static final int ESV_SetC = 0x61;// SetC
public static final int ESV_Get = 0x62;// Get
public static final int ESV_INF_REQ = 0x63;// INF_REQ
public static final int ESV_SetMI = 0x64;// SetMI
public static final int ESV_SetMC = 0x65;// SetMC
public static final int ESV_GetM = 0x66;// GetM
public static final int ESV_INFM_REQ = 0x67;// INFM_REQ
public static final int ESV_AddMI = 0x68;// AddMI
public static final int ESV_AddMC = 0x69;// AddMC
public static final int ESV_DelMI = 0x6A;// DelMI

5-89

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

public static final int ESV_DelMC = 0x6B;// DelMC
public static final int ESV_CheckM = 0x6C;// CheckM
public static final int ESV_AddMSI = 0x6D;// AddMSI
public static final int ESV_AddMSC = 0x6E;// AddMSC
public static final int ESV_Set_Res = 0x71;// Set_Res
public static final int ESV_Get_Res = 0x72;// Get_Res
public static final int ESV_INF = 0x73;// INF
public static final int ESV_SetM_Res = 0x75;// SetM_Res
public static final int ESV_GetM_Res = 0x76;// GetM_Res
public static final int ESV_INFM = 0x77;// INFM
public static final int ESV_AddM_Res = 0x79;// AddM_Res
public static final int ESV_DelM_Res = 0x7B;// DelM_Res
public static final int ESV_CheckM_Res = 0x7C;//
CheckM_Res
public static final int ESV_AddMS_Res = 0x7E;// AddMS_Res

public static final int ESV_SetI_SNA = 0x50;// SetI_SNA
public static final int ESV_SetC_SNA = 0x51;// SetC_SNA
public static final int ESV_Get_SNA = 0x52;// Get_SNA
public static final int ESV_INF_SNA = 0x53;// INF_SNA
public static final int ESV_SetMI_SNA = 0x54;// SetMI_SNA
public static final int ESV_SetMC_SNA = 0x55;// SetMC_SNA
public static final int ESV_GetM_SNA = 0x56;// GetM_SNA
public static final int ESV_INFM_SNA = 0x57;// INFM_SNA
public static final int ESV_AddMI_SNA = 0x58;// AddMI_SNA
public static final int ESV_AddMC_SNA = 0x59;// AddMC_SNA
public static final int ESV_DelMI_SNA = 0x5A;// DelMI_SNA
public static final int ESV_DelMC_SNA = 0x5B;// DelMC_SNA
public static final int ESV_CheckM_SNA = 0x5C;//
CheckM_SNA
public static final int ESV_AddMSI_SNA = 0x5D;//
AddMSI_SNA
public static final int ESV_AddMSC_SNA = 0x5E;//
AddMSC_SNA

//Access rule
public static final int APIVAL_RULE_SET = 0x0001; // Set
public static final int APIVAL_RULE_GET = 0x0002; // Get
public static final int APIVAL_RULE_ANNO = 0x0040; //
Anno

5-90

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

public static final int APIVAL_RULE_SETM = 0x0100; //
SetM
public static final int APIVAL_RULE_GETM = 0x0200; //
GetM
public static final int APIVAL_RULE_ADDM = 0x0400; //
AddM
public static final int APIVAL_RULE_DELM = 0x0800; //
DelM
public static final int APIVAL_RULE_CHECKM = 0x1000; //
CheckM
public static final int APIVAL_RULE_ADDMS = 0x2000; //
AddMS
public static final int APIVAL_RULE_ANNOM = 0x4000; //
AnnoM

//Communication middleware status
public static final int MID_STS_NO_ERR = -1;//Trouble cleared
public static final int MID_STS_APL_ERR = -3;//Application
abnormal

//Communication middleware initialization parameter
public static final int MID_COLD_START = 0;//Cold start
public static final int MID_WARM_START = 1;//Warm start

//Secure communication access restriction level
public static final int APIVAL_ACCESS_ANO = 0x0001; //
Anonymous level
public static final int APIVAL_ACCESS_USER = 0x0002; //
User level
public static final int APIVAL_ACCESS_SP = 0x0003; //
Service Provider level
public static final int APIVAL_ACCESS_MAKER = 0x0004; //
Maker level

//Other
public static final int MYSELF_NODE = 0xFFFFFFFF;//
Indicates the local EN_Object.

}

5-91

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(4) Explanation
 This interface defines various constants for use with the API. The API has

implemented this interface. The application can reference various constants by
implementing this interface.

(5) Notes
 None

5-92

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.8 EN_SecureOpt class
(1) Name
EN_SecureOpt ECHONET secure communication option class
(2) Function
 This class expresses the ECHONET secure communication option.
(3) Syntaxes
 public class EN_SecureOpt extends Object implements

EN_Const {
public boolean authentication, //Authentication process selection
public int keyIndex, //Secure user level
public int cipher, //Ciphering method
public int makerKeyIndex //Maker Key Index
public int makerKey //Maker Key

 }
(4) Explanation
authentication Specifies whether or not to use the authentication process. To use the

process, select “true”. If the process is not required, select “false”.
keyIndex Specifies the secure user level.

 0x00: Serial key index.
 0x01: User secure key index.
 0x03: Maker secure key index.
 0x04: Service provider secure key index.

cipher Specifies the ciphering method.
 Version 2.10 supports 0x00 (block ciphering) only.

makerKeyIndex Used when the maker key index option is specified by “keyIndex”. The
maker key index consists of a main index (MIX) (3 high-order bytes)
and subindex (SIX) (1 low-order byte). The value specified by
makerKeyIndex indicates a shared key index for use in
ciphering/authentication when the maker key ciphering/authentication
header form or maker key ciphering header form is employed. This
value is ignored if an option other than maker key index is specified by
“keyIndex”.

makerKey Used when the maker key index is specified by “keyIndex”. Stores the
maker key itself.

(5) Notes
 None

5-93

Version: 3.60
CONFIDENTIAL

ECHONET CONSORTIUM

ECHONET SPECIFICATION
IV ECHONET Basic API Specifications
5 Level 2 ECHONET Basic API Specifications (For JAVATM Language)

© 2000 (2009) ECHONET CONSORTIUM ALL RIGHTS RESERVED

5.3.9 EN_CpException exception class
(1) Name
 EN_CpException Complex message process exception class
(2) Function
 Expresses a complex message process exception in the API.
(3) Syntaxes
 public class EN_CpException extends Exception implements

EN_Const {
public int type[], //Exception type
public int EPC[], //EPC
public EN_Property p[], //Property
public EN_CpException(int type) //Exception constructor

 }
(4) Explanation
 Expresses a complex message process exception in the API. If the request for

accessing a remote application cannot be processed, a response message is received
indicating the inability to process. In this case, an EN_CpException type exception is
generated The application catches the exception and performs a process for handling
situations in which an access request cannot be made.

(5) Notes
- The following “type” values are available:

EAPI_CpError_Success
EAPI_CpError_NotAccepted

EAPI_CpError_Unconfirm

