ECHONET Lite SPECIFICATION Date: Mar. 5, 2012

II ECHONET Lite Communication Middleware Specification Version 1.01
ECHONET CONSORTIUM

Part |l
ECHONET Lite

Communication Middleware Specification

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012

II ECHONET Lite Communication Middleware Specification Version 1.01
ECHONET CONSORTIUM

The specifications published by the ECHONET Consortium are established without regard to
industrial property rights (e.fg., patent and utility model rights). In no event will the ECHONET
Consortium be responsible for industrial property rights to the contents of its specifications.

In no event will the publisher of this specification be liable to you for any damages arising out
of use of these specifications.

The original language of The ECHONET Lite Specification is Japanese. The English version of
the Specification was translated the Japanese version. Queries in the English version should be
refereed to the Japanese version.

ii

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012

II ECHONET Lite Communication Middleware Specification Version 1.01
ECHONET CONSORTIUM
Contents

CREAPLET 1 OVEIVIEW ...kttt bbb bttt b bbbt e 1-1
1. L BASIC CONCEPT ...ttt ittt sttt ettt et b et b ekt sb e bt e bt e bt et ekt h e e e b e ekt e s e e ebeeb e e beeb e e s e e ke sbe et e st e eneeneentes 1-1

1. 2 POSITIONING ON COMMUNICATIONS LAYERSctiiiiitriiiiinieieisisteie st 1-1
Chapter 2 ECHONET ODJECESuviiuiiiiicie ettt ste e e e sneenennes 2-1
2. L BASIC CONCEPT ..ututttetteteteseseseete st sbebe st e s ee s e st e bebe st e s e e s et e e b e b e s e e b e b et £ ek e b e Rt e e et e b et ee et et e et et e b et anabers 2-1

2. 2 DEVICE OBJIECTS .. ttitteutesttaseesteateestesteestesteeteebesbeessesbesbeesbe et e esbesbeebe e be s bt essenbe e bt e nbeabeenbenbe et e enbenbeaneenbe e 2-1

2. BPROFILE OBJIECTS ..uteeteteuttetesestseeteseestasasesessssestsssesesessasaseseasasesasessaseseseasasetesessaseseseasaseseneasasesessasasasas 2-2

2. 4ECHONET OBJECTS AS VIEWED FROM APPLICATION SOFTWAREotiiiueieriinisieseaesieseessssesenssessenas 2-3
Chapter 3 Message Structure (Frame FOIMAL)cccocveiieiiiiieieece e 3-1
3. L BASIC CONCEPT ..ututtteteseteteseseseete et tebese e sese st e be e e et e b et s e b e b e st e b e b et E e b e b e st e et e bt s et et ene e sb e b e e anebers 3-1

3. 2 FRAME FORMATutiteiietesiete ettt ettt st ese st s e st e st b e s e et et et e e s e e et et e b et ebe st ene e eneneenenrn 3-1

3. 2. 1ECHONET Lite Header (EHD)......ccovioieiiiieie sttt et see e nre s 3-2

3. 2. 27TranSaction ID (TID)ciiiieii ittt re st e s beese e be s re et e sreaneesteetaenbenres 3-3

3. 2. 3ECHONET Lite Data (EDATA)ooieiie ettt sseesaesne e seesraensenneas 3-3

3. 2. 4 ECHONET ODBJECt (EOJ) c.oovooeireeseeeeseeeseeseeeseesesessesesses s sssessssss s ssssessssssssesssssssnnees 3-3

3. 2. 5 ECHONET Lite SEIVICE (ESV) .iciiitiiii ittt ettt st sttt st ta e nre s 3-5

3. 2. 6 Processing Target Property Counters (OPC, OPCSet, and OPCGEL)ccevvvvvrvereireirnenn, 3-15

3. 2. 7 ECHONET PIOPEILY (EPC).....oveoierieeeeeeeeseeeeeeseeeeseeseseeesseeseessesseseessessessesssesseessesessessessssse 3-16

3. 2. 8 Property Data COUNLEr (PDC).......ooviieieiiiiiiiisiisie sttt 3-17

3. 2. 9 ECHONET Property Value Data (EDT).....ccccciiiiiiiiic ettt 3-17
Chapter 4 BaSIC SEQUENCESeeveiuieiteeiesiee st eie st e ste et e s teeste s esteestessaesteestesseesbeeeeaseesteensesnsesreerennes 4-1
4. L BASIC CONCEPT oeuttetitestetesteteseeteseeteseesesteseseesestesessesestesessesease st ase e e se s ese s eseseese e eteseesessesenseneseeneseenenrs 4-1

4. 2 BASIC SEQUENCES FOR OBJECT CONTROLcvtutetiieritesestesessesesseseesessssessssessesessesessesessessssessssesessensases 4-1

4. 2. 1 Basic Sequences for Object Control in Generalccooviiiiiiiiineiee s 4-1

4. 2. 2 Basic Sequences for SErviCe CONENT..........cciviiiiiie ettt sreens 4-3

4. 3BASIC SEQUENCE FOR ECHONET LITE NODE STARTUP ..ottt 4-4

4. 3. 1 Basic Sequence for ECHONET Lite NOUE Start..........ccccevieiiiiiiiiciesece e 4-5
Chapter 5 ECHONET Lite Communications Processing Block Processing Specifications............. 5-1
ST =] (o 00 N 01 = S SRSTSTSSRPSR 5-1

5. 2 OBJECT PROCESSING SPECIFICATIONScveuttirtateseesesaseseesessesessesessessssessssessssessasessesessesessessssesessessnses 5-1

5. 3 SEND MESSAGE CREATION/MANAGEMENT PROCESSING.........ccooiiiiiiiiiiiieei i 5-2

5. 4 STARTUP PROCESSING.....ctetttetiieststesessesestesessessesesessessasessesessasessesessessssessssessssessasessesessesessensssesessesases 5-2

5. 5 DESCRIPTION OF PROCESSING FUNCTIONScutiiuiiiriiieiesiieteieesesisseessstsee e sesesessesesessssesessssssenas 5-2
Chapter 6 ECHONET Objects: Detailed SpecifiCations............ccovvrieiieiiin e 6-1
L YN [o 0] N o = = OSSP 6-1

6. 2 ECHONET PROPERTIES: BASIC SPECIFICATIONS......cvetieuiteresiesesesessesssessssessesessesessssessessssesessensases 6-1

6. 2. 1 ECHONET Property Value Data TYPEScuiiririirieieieieisese st 6-1

- iii -

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012

II ECHONET Lite Communication Middleware Specification Version 1.01
ECHONET CONSORTIUM
6. 2. 2 ECHONET Property Valug RANQE.........coviieiiiecieie sttt st ta e srestaenneane s 6-2
6. 2. 3 Class-specific Mandatory PrOPEITIEScccuiiiiiiireieeeeee et 6-3
6. 2. 4 Properties that Must Have a Status Change Announcement FUNCLIONcccccovviveveieeiieenns 6-3
6. 3 DEVICE OBJECT SUPER CLASS SPECIFICATIONSc.vettitietessesteseeeeseeseesessessessessessessessesessessessessessessesens 6-3
6. 3. 1 Overview of Device Object Super Class SPecifiCations............ccccveveviveiiiiiiiicie e 6-3
6. 4 SENSOR-RELATED DEVICE CLASS GROUP OBJECTS: DETAILED SPECIFICATIONScccvvvvrevieireneeenns 6-3
6. 5 AIR CONDITIONING-RELATED DEVICE CLASS GROUP OBJECTS: DETAILED SPECIFICATIONS............ 6-4
6. 6 HOUSING/EQUIPMENT-RELATED DEVICE CLASS GROUP OBJECTS: DETAILED SPECIFICATIONS......... 6-4
6. 7 COOKING/HOUSEWORK-RELATED DEVICE CLASS GROUP OBJECTS: DETAILED SPECIFICATIONS 6-4
6. 8 HEALTH-RELATED DEVICE CLASS GROUP OBJECTS: DETAILED SPECIFICATIONScccvviveeiieieeneeenns 6-4
6. 9 MANAGEMENT/CONTROL-RELATED DEVICE CLASS GROUP OBJECTS: DETAILED SPECIFICATIONS .. 6-4
6. 10 PROFILE OBJECT CLASS GROUP SPECIFICATIONSecutitiitesteseeseeseeseasessessessessessessessessssessessessessessesens 6-4
6. 10. 1 Overview of Profile Object Super Class SpecifiCations...........c.ccoceviveiieiiiiiiciiesiese e 6-4
6. 10. 2 PrOPEITY IMAD .. .coeeieieiie ittt sb e e b s r e r e r e n b e e e sreer e nenre s 6-5
6. 11 PROFILE CLASS GROUP: DETAILED SPECIFICATIONSccutiieieiteereestesteeseestesseestesseessesresssessessesssessens 6-5
6. 11. 1 Node Profile Class: Detailed SPeCIfiCatiONS...........ccoerveieiiiiriisiniesieseee e 6-6
APPENDIX 1 REFERENCEveutitietieteitiitestestesteteseeseesassestessessessessessessassaseateasestessesessesseseaseasaasessessessessessnnes |
APPENDIX2 ERROR PROCESSING AT MESSAGE RECEPTION....c.iiiiuietietieiesiesiestesiesieeeseesaesessessessessesseseenes [
- iV -

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012
IT ECHONET Lite Communication Middleware Specification Version 1.01

1 Overview ECHONET CONSORTIUM

Chapter 1 Overview
1. 1 Basic Concept

The ECHONET Lite Communication Middleware specifications indicated in this Part not only
concern the communication protocol but also include processing for the portion found between the
Application Software Block and the Lower-Layer Communications Software Block shown in the
next section (Section 1.2 "Positioning on Communications Layers"). The communication protocol
specifications are described in Chapters 2 to 4.

The ECHONET Lite Communication Middleware (hereinafter, simply referred to as
"Communication Middleware") specifications were designed primarily to enable concealment of
differences in Lower-Layer Transmission Medium from the perspective of the application layer.
Other issues relating to communication protocol specifications for the communication middleware
block are listed below.

(1) Use of JEM-1439 resources
The specific command contents (device types, specific codes, etc.) of JEM-1439 were used for
specific device object type and code specifications.
< Notes: 1) A home network (especially home equipment) standard published in Aug.
1988 by the Japan Electrical Manufacturers’ Association. For detailed information on
this standard, see Reference 1 in Appendix 1.

1. 2 Positioning on Communications Layers

Communication Middleware is positioned between Application Software and Lower-Layer
Communications Software. Specifications are provided in this Part. In Fig.1.1, the shaded area
shows the Communication Middleware Block to be specified.

OSIl Layer
7 Application
6 Device objects] [Profile objects }
ECHONET Lite

ECHONET Lite Communication C?\Ar';c;g‘f:\,'\f;t;o"
5 Processing Block
4
3 .

Lower communication layers

> (Layers 1 to 4 not defined)
1

Fig. 1. 1 Communication middleware

1-1

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012
IT ECHONET Lite Communication Middleware Specification Version 1.01

1 Overview ECHONET CONSORTIUM

As Fig.1.1 shows, the Communication Middleware Block specified in this document (Part 2)
consists of ECHONET Lite Communication Processing Block. The ECHONET Lite
Communication Processing Block is specified as a function not dependent on Layers 1 to 4. The
ECHONET Lite Communications Processing Block transmits and receives the ECHONET Lite
frames specified in Chapter 3. There are two types of transmission mode, namely individual
transmission and broadcast transmission. With individual transmission, destinations inside the
ECHONET Lite subnet are stipulated using an address in Layer 4 or lower, and ECHONET Lite
frames are transmitted to specific ECHONET Lite nodes. With broadcast transmission, destinations
inside the ECHONET Lite subnet are stipulated using an address in Layer 4 or lower, and
ECHONET Lite frames are transmitted to all ECHONET Lite nodes inside the subnet. If a lower
communication layer (Layer 4 or lower) does not support multicast or broadcast, broadcast
transmission by ECHONET Lite may be achieved in unicast by transmitting to ECHONET Lite
devices connected inside the subnet. However, neither unicast destinations nor the method of setting
them is specified in this Specification; these shall be determined individually for each lower
communication layer used.

Security is not specified in the ECHONET Lite Communication Processing Block. By applying the
existing security standard technologies to Layer 4 or lower as required, security of ECHONET Lite
is ensured. See 2.2 in Part 5 for details.

When using the following protocol in Layer 4 or lower, it is mandatory to support specified
addresses and ports.

(1) Using UDP(User Datagram Protocol) in Layer 4 and Internet Protocol (IP) in Layer 3

Each ECHONET Lite node has its own IP address. The IP address range and acquisition method are
not specified. ECHONET Lite frames are transferred by UDP packets. The destination port number
of UDP packet shall be 3610. The source port number is not specified. For broadcast (simultaneous
transmission), ECHONET Lite frames are mapped on IP multicast packets and transferred. For 1Pv4,
the destination multicast address value shall be 224.0.23.0. For IPv6, ff02::1 (all-node multicast
address) shall be used. If security is necessary in Layer 4 (UDP) and Layer 3 (IP), RFC5191 shall
be used for node authentication, DTLS for encryption and tampering prevention in Layer 4 (UDP),
and IPSec, etc. for encryption and tampering prevention in Layer 3 (IP).

1-2

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification Version 1.01

2 ECHONET Objects ECHONET CONSORTIUM

Chapter 2 ECHONET Obijects
2. 1 Basic Concept

The ECHONET Objects specified in this section were introduced with two objectives: first,
compartmentalization of functions of devices connected to the ECHONET network; and second,
modelization of communication between devices to enable application software developers to
utilize ECHONET Lite communication whenever possible without concern for detailed
specifications. The ECHONET Objects are processed in the ECHONET Lite Communications
Processing Block. Control content exchanged in communications can be classified into those
relating to functions unique to each device and those relating to data profiling something other than
the functions unique to each device. In ECHONET Lite, all of these are specified as objects, and
control and data exchange were achieved to enable their manipulation. The ECHONET Lite
Specification stipulates two types of ECHONET Objects:

(1) Device Objects
(2) Profile Objects

Each ECHONET Object has properties. The various unique functions possessed by an ECHONET
node are represented as ECHONET Properties. Reading or writing the ECHONET Properties of the
ECHONET Object in the relevant ECHONET node operates the device.

ECHONET Objects are defined as the following specifications: object type (codes are specified in
the next section as EQJ); the properties possessed by each object (codes are specified in the next
section as EPC); and the services for those properties (codes are specified in the next section as
ESV). The following issues were taken into account when formulating the detailed specifications:

It was assumed that each ECHONET node would have more than one Device
Object of the same type (e.g., two Human Detection Sensor objects in the same
node), and that identification could be performed by stipulating a specific code
(see detailed specifications for EOJ in the following section).

ECHONET Objects defined in the ECHONET Lite Specification comply with the
ECHONET Specification. Of the properties of each object defined in "ECHONET
Device Object: Detailed Specifications", however, properties using array elements
service are not specified in ECHONET Lite Specifications.

2. 2 Device Objects

"Device mechanical functions" of a device are specified as a Device Object. A Device Object aims
to facilitate controls and status verifications through communications between devices. Device
Object data resides in the ECHONET Lite Communication Middleware, but the device mechanical
functions themselves reside in the Application Software Block. The ECHONET Lite
Communication Middleware manages instance property data and manages and processes operations
related to communication for properties. In these Specifications, the term "Device Object" shall be
used as a generic term for home air conditioners, refrigerators with freezers, etc. The object

2-1

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification Version 1.01

2 ECHONET Objects ECHONET CONSORTIUM

definitions for each Device Object are specified (see "APPENDIX, Detailed Requirements for
ECHONET Device objects.")

In a single ECHONET Device, one or more Device Objects is defined. Each Device Object defines
the properties to be used in each class and the services corresponding to the properties. Fig. 2. 1
Device object example

Device objects

T— Human Detection Sensor Class A
— ~ Property Contents of
. . Propert
Air Conditioner Class — perty
Property Contents of Human Detection Sensor Class
Py Property Contents of
Operating state ON/OFF Property
Operation mode Auto/cooling/hea Operating state ON/OFF
ting/... Detection Level 1
Temperature Tempenrature threshold level
setting value Human Yes/No No
detection status
Fault occurrence Fault Yes/No Instance (2)
status
Fault occurrence Fault Yes/No
Instance (1) status
\§ J Instance (1)
. /

Fig. 2. 1 Device object example

Class definitions for the Device Objects (Air Conditioner, etc.) (i.e., property configurations and
other specific definitions and code specifications) are listed in "TAPPENDIX, Detailed Requirements
for ECHONET Device objects.” Other ECHONET Lite nodes seeking to control the functions and
confirm the status of an ECHONET Lite node via ECHONET Lite do so by manipulating (i.e.,
reading/writing) these device objects.

When a value is written into a property, the value will be handed to the application software for
processing. Whether processing is actually performed or not is determined by the value written into
the property and the status of the application software.

With regard to Device Object property values, it must be possible to read the value currently held
by the corresponding application software according to the class definitions given in "APPENDIX,
Detailed Requirements for ECHONET Device objects” and, based on the functions of the
application software, a change shall be generated by user operation of the equipment, automatic
control through internal processing of the equipment and/or ECHONET Lite communication-based
writing operation.

2. 3 Profile Objects

ECHONET Lite Node Profile data, such as ECHONET Lite node operating status, manufacturer
information, and implemented Device Objects list, are specified to enable manipulation (read/write)
by application software and other ECHONET nodes. In these specifications, the term "Profile
Objects™ shall be used as a blanket term to refer to the ECHONET Lite Profile Class of Node
Profile Objects, with detailed specifications to be provided individually. Similar to the Device
Objects shown in Fig. 2. 1 Device object example on the preceding page, Profile Objects define the
properties to be used in each class and the services corresponding to the content and properties
thereof (see "APPENDIX, Detailed Requirements for ECHONET Device objects"). Operations on

2-2

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification Version 1.01

2 ECHONET Objects ECHONET CONSORTIUM

the various profiles of an ECHONET Lite node are performed by manipulating (reading/writing)
these profile objects.

2. 4 ECHONET Objects as Viewed from Application Software

Control from application software using Basic APIs is described for the three main cases listed
below, with a focus on how the ECHONET Objects are perceived.

Case 1: Obtaining other node status
Case 2: Controlling other node functions
Case 3: Notifying other nodes of self-node status

(1) ECHONET Objects when obtaining other node status

The ECHONET Lite Specification provides two methods for obtaining the status of another node.
These methods are shown in Fig. 2. 2 and

Fig. 2. 3. In the method shown in Fig. 2. 2, when a request is received from an application, an obtain
status request is issued to objects in the specified other node (Node B), with the results notified to
the application. With this method, object data for the other node need not be stored in the
ECHONET Lite Communication Middleware for the node (Node A in the figure) making the
request. In the second method, shown in

Fig. 2. 3, even when no request is received from an application, the ECHONET Lite
Communication Middleware catches and holds the notified status of objects in other nodes in
advance, and then returns them to an application when it receives a request. In this method, objects
copied to ECHONET Objects in other nodes actually exist within the ECHONET Lite
Communication Middleware. In the former method (Fig. 2. 2), because the access is performed
from an application, a virtual copy of the ECHONET Objects in the other node exists in the
ECHONET Lite Communication Middleware. In both cases, in order to set the desired ECHONET
Object instance via the Basic API, not only the ECHONET Object class code but also an instance
code and data specifying the node (ECHONET address, etc.) are necessary. From the viewpoint of
the application, therefore, ECHONET Objects are seen in the relationship shown in Fig. 2. 4 within
the ECHONET Lite Communication Middleware.

(Status Read b (b
Node A @ Node B

Applic 104 Sj?ftware Application software

"E_Obj‘

acquisition timings
synchronous

ECHONET llite Communication ECHONET Ljte Cojnmunication
Middleware Migidlewgre

_ — - - J

[Read and status

Fig. 2. 2 Acquisition of other node status (1)

2-3

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012

II ECHONET Lite Communication Middleware Specification Version 1.01
2 ECHONET Objects ECHONET CONSORTIUM
4) 4)

Node A Node C
Applicdtion sdftware Application software
E_Obj E_Obj
A
ECHONET I__ite Communication amiiﬁgg tﬁﬁt:gs ECHONET I__ite Communication
Middlgware synchronous Middlgware
[
- J

A
v

Fig. 2. 3 Acquisition of other node status (2)

4 Node A)
Application software
Node C
ECHONET Lite Communication Middleware
- J

Fig. 2. 4 Objects seen from application software
(2) ECHONET Objects when controlling other node functions

ECHONET Lite provides a method for controlling the functions of other nodes, as shown in Fig. 2.
5. Just as in Fig. 2. 2, however, a request for control (property value setting) is issued to objects in
the specified other node (Node B), and the application is then notified of the results (although there
are exceptions to this). Basically, therefore, property data for objects in the other node (Node B)
need not be present in the ECHONET Lite Communication Middleware for the node (Node A)
making the request. From the viewpoint of the application, ECHONET Objects are seen in the
relationship shown by Node B in Fig. 2. 6 within the ECHONET Lite Communication Middleware.

2-4

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification Version 1.01

2 ECHONET Objects ECHONET CONSORTIUM

Control setting

regues
Node A

N (= \

Apr}kiation software Application software
A A
C YEOW | Y E_OBj
A A
ECHONET Lite Communication ECHONET Lite Comnmunication
Middlewafe Migdlewafe

Fig. 2. 5 Method of controlling other nodes

Node A

Application software

ECHONET Lite Cfommunication Middleware

Fig. 2. 6 Objects seen from application software
(3) ECHONET Objects when notifying another node of self-node status

ECHONET Lite provides two methods for notifying application software on another node of the
status of the self-node. These methods are shown in Fig. 2. 7 Method of notification to other
nodes Fig. 2. 8. In the method shown in Fig. 2. 7 Method of notification to other nodes ,
when a request is received from an application, the specified other node (Node B) is immediately
notified, and the device status need not be stored as an object in the ECHONET Lite
Communication Middleware for the node (Node A) announcing the status. In the second method,
shown in Fig. 2. 8, upon receiving a request from an application, the ECHONET Lite
Communication Middleware periodically sends notification of the property value to the other node
using asynchronous timing that differs from the request from the application. Here, ECHONET
Object data actually exists in the ECHONET Lite Communication Middleware. In the former
method (Fig. 2. 7 Method of notification to other nodes), however, because communication
is stipulated by the application, a virtual copy of the ECHONET Obijects exists in the ECHONET
Lite Communication Middleware. In either case, from the viewpoint of the application, the

2-5

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification
2 ECHONET Objects

Date: Mar. 5, 2012
Version 1.01
ECHONET CONSORTIUM

ECHONET objects of the self-node are seen as existing within the ECHONET Lite Communication
Middleware (Fig. 2. 9)

Node A N /Node B)

Application software Application software

Immediate
cleen o\ T, . 1)
status setting i

to Node B yE_Obj Read and status
acquisition timings
S o synchronous A
ECHONET |Lite Communicatio ECHONET Lite Communication
Middleware Middlewarg
% o %

Fig. 2. 7 Method of notification to other nodes (1)

Node A Node C h

Application software Application software

No transmission L - a)
until status E Obi A Setting and status
setting - notification timings
implementation asynchronous
time 1
ECHONET Lite Cdmmunication ECHONET Lite]Communication
Middlewéare Middleware
= J

Fig. 2. 8 Method of notification to other nodes (2)

Node A

Application software

Node B

ECHONET Lite Communication Middleware

(S J

Fig. 2. 9 Objects seen from application software

As is clear from the three cases shown above, the ECHONET Lite Communication Middleware is
viewed by the application software as containing (and in some cases actually does contain) (1) a

2-6

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification Version 1.01

2 ECHONET Objects ECHONET CONSORTIUM

collection of ECHONET objects of the self-node whose role is to disclose the functions of the
self-node to other nodes and to be controlled by other nodes; and (2) ECHONET objects at the node
level whose role is to control and obtain the status of the functions of other nodes. Here, the
"Self-device" shall be specified as the unit for a collection of ECHONET object instances showing
the functions of the self-node. Only one such device exists in each piece of ECHONET Lite
Communication Middleware, but there may be as many other devices as there are other related
nodes.

Based on the above, Fig. 2. 10 shows a typical ECHONET Lite Communication Middleware object
configuration for a system in which an air conditioner, ventilation fan, and human detection sensor
are connected as separate nodes via a network, seen from the perspective of the application software
in the air conditioner.

/ ECHONET Lite Communication Middleware [Other device n
[
[
Self-device Other device 2
(Object group for self-node device disclosure) (Object field for other-node function control)
(" . .) 4 N
Air Conditioner Class | iance 11 Ventilator class
Property Contents of [Instance 1]
Property
Property Contents of
Operating state ON/OFF Property
Operation mode Auto/cooling/h Operating state ON/OFF
eating/... " °

Temperature setting | Temperature
Fault occurrence | Fault Yes/No

value -
status

Fault occurrence Fault Yes/No ~ =4
status)
Other device 1
(Object field for other-node function control) N
Human Detection Sensor C[I%gtsance 2]
S
i \s of
Human Detection Sensor Claslqnstance 1]
Property Contents of
Property
Operating state ON/OFF
Detection Level 1...
threshold level
Human detection Yes/No
status
s/INo
——
Fault occurrence Fault Yes/No
\ 9 status

Fig. 2. 10 Example of Object Configuration

2-7

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECTFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification ‘Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM

Chapter 3 Message Structure (Frame Format)
3. 1 Basic Concept

To reduce the mounting load on simple devices, ECHONET Lite specifies the frame format for the
ECHONET Lite Communication Middleware Block to minimize message size while fulfilling the
requirements of the communications layer structure.

3. 2 Frame Format

Fig. 3. 1 shows the format of ECHONET Lite frames processed by the ECHONET Lite
Communication Middleware. Detailed specifications for each message component are provided on
the following pages.

In this Specification, messages exchanged between ECHONET Lite Communication Processing
Blocks are called ECHONET Lite frames. ECHONET Lite frames are roughly divided into two
types depending on the specified EHD (see3. 2. 1): the message format specified by ECHONET
Lite and the message format unique to the user. The ECHONET Lite frame length depends on the
lower-layer communication media.

3-1

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012

II ECHONET Lite Communication Middleware Specification Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM
Format 2 (arbitrary Arbitrary format

message format)

Format 1 (specified | SEOJ | DEOJ | ESV | OPC |EPC 1|PDC 1|EDT 1 EPC n{PDC n|EDT n
message format)

SEOJ : Source ECHONET Lite object specification (3B)
DEOJ : Destination ECHONET Lite object specification(3B)

ESV :ECHONET Lite service (1B)
OPC : Number of processing properties (1B)
EPC :ECHONET Lite Property (1B)
PDC : Property data counter (1B)

EDT : Property value data (Specified by PDC)

EHD1|EHD2| TID EDATA
EHD1 ECHONET Lite message header 1 (1B)
EHD2 :ECHONET Lite message header 2 (1B)
TID : Transaction ID (?R)

EDATA : ECHONET Lite data

Fig. 3. 1 ECHONET Lite frame format

3. 2. 1 ECHONET Lite Header (EHD)
EHD consists of ECHONET Lite Header 1 and ECHONET Lite Header 2.

3.2.1.1 ECHONET Lite Header 1 (EHD1)

The figure below shows the detailed specifications of ECHONET Lite Header 1 (EHD1) shown in
Fig. 3. 1.

b7 b6 b5 b4 b3 b2 bl bO
0|0|O 1] 0]0(0]|O

future reserved

Protocol type

1***: Conventional ECHONET
Specification

0001: Conventional ECHONET
Lite Specification

0000: Not available

Other: Reserved for future use

Fig. 3. 2 Detailed specifications of EHD1

3-2

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECTFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification ‘Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM

The combination of b7 to b4 specifies an ECHONET protocol type. b7:b6:b5:04=0:0:0:1 indicates
the ECHONET Lite Protocol defined in this Specification. b7:b6:b5:b4=0:0:0:0 shall not be used
because it enables coexistence with the conventional ECHONET Protocol.

3.2.1.2 ECHONET Lite Header 2 (EHD2)

The figure below shows the detailed specifications of ECHONET Lite Header 2 (EHD2) shown in
Fig. 3. 1.

b7 b6 b5 b4 b3 b2 bl hO
15| v |5 [v | % | %

0x81: Format 1

0x82: Format 2

Other: Reserved for future use
However, b7 = 1 (fixed)

Fig. 3. 3 Detailed specifications of EHD2

EHD2 defines the EDATA frame format. When EHD?2 is 0x81, the EDATA frame format is Format
1 (specified message format) defined in this Specification. When EHD2 is 0x82, the EDATA frame
format is Format 2 (arbitrary message format). For coexistence with the conventional ECHONET
Protocol, b7 is fixed at 1.

3. 2. 2 Transaction ID (TID)

TID is a parameter used to string a sent request and a received response when a request sender
receives a response in ECHONET Lite communications. A response sender shall store the same
value as that contained in the request message. The TID values of property value notifications and
other messages that do not need to receive a response are not expressly specified.

3. 2. 3 ECHONET Lite Data (EDATA)

EDATA refers to the data area of a message exchanged by the ECHONET Lite Communication
Middleware.

3. 2. 4 ECHONET Object (EQJ)
The figure below shows the detailed specifications of ECHONET Obijects in Fig. 3. 1.

3-3

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012

II ECHONET Lite Communication Middleware Specification Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM
Byte 1 Byte 2 Byte 3

b7 b6b5b4b3b2b1 b0 b7b6b5b4b3b2b1b0 b7 b6 b5bd b3 b2 b1 b
e el [l el e v i g B Il Pl P A kgl kgl IE SRS S E S B E S
I [1 [1 I

X3: Instance code

X2: Class code
X1: Class group code

Fig. 3. 4 Detailed specifications of EOJ code

ECHONET objects are described using the formats [X1.X2] and [X3], to be specified as shown
below. (However, "." is used only for descriptive purposes and does not mean a specific code.) The
object class is designated by the combination of X1 and X2, while X3 shows the class instance. A
single ECHONET Lite node may contain more than one instance of the same class, in which case

X3 is used to identify each one.

The specific items in Table 3.2 to Table 3.8 were specified based on JEM-1439. Detailed
specifications for the objects shown here will be developed over time, and during this phase
specifications for the objects themselves (i.e., present/not present) will be further reviewed. Objects
for which detailed specifications (including property configurations) have already been formulated
will be indicated with a “O” in the Remarks column, with the detailed specifications to be provided
in "APPENDIX, Detailed Requirements for ECHONET Device objects.”

Instance code 0x00 is taken as the code for specifying all instances. This indicates that
all instances in a specified class are specified.

X1 : Class group code

0x00-OxFF. For details, refer to Table 3.1.

X2 : Class code

0x00-0xFF. For details, refer to Tables 3.2 to 3.8.

X3 : Instance code

0x00-0x7F. This is an identification code when the same class as that of attributes specified

by [X1. X2] exists more than once in the same node.

However, 0x00 is used as a designation of all instances of the same class.

Table 3.1 List of Class Group Codes

GROUP CODE GROUP NAME REMARKS
0x00 Sensor-related device class group
0x01 Air conditioner-related device class group
0x02 Housing/facility-related device class group
0x03 Cooking/housework-related device class group
0x04 Health-related device class group
0x05 Management/control-related device class group
0x06 AV-related device class group
3-4

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION
II ECHONET Lite Communication Middleware Specification
3 Message Structure (Frame Format)

Date: Mar. 5, 2012
Version 1.01
ECHONET CONSORTIUM

0x07-0x0D Reserved for future use
Ox0E Profile class group
Ox0F User definition class group
0x10-0xFF Reserved for future use

Table 3.2 Class Code List (Class Group Code X1=0x00)
For details, refer to Table 1.1 in “APPENDIX, Detailed Requirements for ECHONET Device
objects.”

Table 3.3 Class Code List (Class Group Code X1=0x01)
For details, refer to Table 1.2 of “APPENDIX, Detailed Requirements for ECHONET Device
objects.”

Table 3.4 Class Code List (Class Group Code X1=0x02)
For details, refer to Table 1.3 in “APPENDIX, Detailed Requirements for ECHONET Device
objects.”

Table 3.5 Class Code List (Class Group Code X1=0x03)
For details, refer to Table 1.4 in “APPENDIX, Detailed Requirements for ECHONET Device
objects.”

Table 3.6 Class Code List (Class Group Code X1=0x04)
For details, refer to Table 1.5 in “APPENDIX, Detailed Requirements for ECHONET Device

objects.”
Table 3.7 List of Class Codes for Class Group Code (X1=0x05)
CLASS CODE CLASS NAME DETAILED REMARKS
SPECS.
0x00-0xFC Reserved for future use
OxFD Switch
OXFE Portable terminal
OXFF Controller
Table 3.8 List of Class Codes for Class Group Code (X1=0x0E)
CLASS CODE CLASS NAME DETAILED REMARKS
SPECS.
0x00-0xEF Reserved for future use
OxFO Node profile Detailed specifications for this class are given
® in Part 2, Paragraph 6.11.1.
OXF1-OxFF Reserved for future use

3. 2. 5 ECHONET Lite Service (ESV)

This section provides detailed specifications for the ECHONET Lite service (ESV) code shown in
Fig. 3.1

35

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012

II ECHONET Lite Communication Middleware Specification Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM
b7 b6 b5 b4 b3 b2 b1 b0

O 1 |¥¢ 3¢ [¥% pr pe pre

L] | |
| For details, see Tables 3.9 to 3.11.

Fixed

Note: Except when b7:b6=0:1, b0 to b5 have different meanings.
Fig. 3. 5 ESV code detailed specifications

The service provided by this code is used when the compound message format is used. It specifies a
simultaneous action for two or more properties stipulated by the EPC. However, it does not stipulate
the order of operations. The order of property operations is an implementation issue.

The following three types of operations are provided. The response is subdivided into two types:
“response” and “response not possible”. The “response” is used when the service request in relation
to all the EPC-stipulated properties is accepted. The “response not possible” is used when one or
more specified properties do not exist or when the specified service cannot be processed for one or
more properties.

“Request,” “Response” (response/response not possible), and “Notification”

The “response” is a response to a “request” that requires a response. It must be returned when an
EOJ-stipulated object exists. When the service processing request related to all the EPC-stipulated
properties is accepted, the “response” must be returned. If the processing request related to one or
more specified properties cannot be accepted or if the object exists but one or more properties do
not exist, “response not possible” must be returned. When the “request” does not require any
response or when the specified object does not exist, no “response” will be returned.

There are two types of “notification”: one for transmitting own property information autonomously
and the other for sending a response to a notification request. However, these two types have the
same code.

Three specific operations are provided: write (response required/no response required), read, write
& read, and notification (notification/notification with response required). The six operations shown
below are set:

(1) Property value write (response required)

(2) Property value write (no response required)

(3) Property value read

(4) Property value write & read

(5) Property value notification

(6) Property value notification (response required)

The ESV and message configuration and their relationship to EPC and ESV are described here. The

3-6

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECTFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification ‘Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM

EPC of an ECHONET Lite message is such that the ESV value determines whether the target object
is stipulated by the SEOJ or DEOJ. When the ESV is a “response” or “notification”, it is concluded
that the EPC forms a SEOJ-stipulated object and that the “response” or “notification” is addressed
to a DEOJ-stipulated object. On the other hand, when the ESV is a “request”, it is concluded that
the EPC forms a DEOJ and that the “request” is issued from an SEOJ-stipulated object.

If there is no EOJ to be set as SEOJ or DEOJ, a node profile class shall be specified.

Table 3.9 shows specific ESV code assignments based on the content described above. (The related
number is indicated in the Remarks column of the table.)

In diagrams (1) to (6), the EOJ values used in relation to “requests” are individually specified codes.
However, although a service request is made to two or more nonspecific object instances using a
single message when the EOJ value indicates all instances of the specified class (i.e. X3 =0x00), the
processing in such a case shall assume that a request message was sent individually to each instance.
That is, when it is necessary to send response messages, they shall be generated in such a manner
that the number of instances equals the number of response messages, and messages with contents
that match the individual instances shall be sent after storing such contents.

Fig. 3.6 provides a sequence diagram of the relationship between individual ESVs.

Table 3.9 List of Service Codes for Request

Service
Code ECHONET Lite Service Content Symbol Remarks
(ESV)
0x60 Property value write request (no response | Setl (1); Broadcast possible
required)
0x61 Property value write request (response | SetC
required)
0x62 Property value read request Get (2); Broadcast possible
0x63 Property value notification request INF_ REQ | (3); Broadcast possible
0x64-0x | Reserved for future use
6D
OX6E Property value write & read request SetGet (4); Broadcast possible
Ox6F Reserved for future use

Table 3.10 List of ESV Codes for Response/Notification

Service
Code ECHONET Lite Service Content Symbol Remarks
(ESV)
0x71 Property value Property value write | Set Res ESV=0x61 response (1); Individual
response response
0x72 Property value read response Get_Res ESV=0x62 response (2); Individual
response
0x73 Property value notification INF *1 (3): Both individual
notification and broadcast
notification
3-7

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

3 Message Structure (Frame Format)

Date: Mar. 5, 2012
Version 1.01
ECHONET CONSORTIUM

0x74 Property value notification (response | INFC (5); Individual notification
required)
0x75-0x79 | Reserved for future use
OX7A Property value notification response INFC_Res | ESV=0x74 response (5); Individual
response
0x7B-0x7 | Reserved for future use
D
OX7E Property value write & read response SetGet_Re | ESV=0x6E response (4);
S Individual response
Ox7F Reserved for future use
Note: *1 Used for autonomous property value notification and for Ox63 response.
Table 3.11 List of ESV Codes for "Response Not Possible"
Service
Code ECHONET Lite Service Content Symbol Remarks
(ESV)
0x50 Property value write request "response not | Setl SNA | ESV=0x60 response not
possible” possible (1); Individual response
0x51 Property value write request "response not | SetC_SNA | ESV=0x61 response not
possible" possible (1); Individual response
0x52 Property value read "response not possible” | Get SNA | ESV=0x62 response not
possible (2); Individual response
0x53 Property value notification "response not | INF_SNA | ESV=0x63 response not
possible" possible (3); Individual response
0x54-0x5 | Reserved for future use
D
Ox5E Property value write & read "response not | SetGet S | ESV=0x6E response not
possible” NA possible (4); Individual response
0x5F Reserved for future use

3-8

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012

II ECHONET Lite Communication Middleware Specification Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM
ECHONET ECHONET node ECHONET ECHONET node
node (with property) node (with property)
ESV=0x6 3 (3 =0) ESV=0x6 (% =1,2), 0x74
Processing
<Noresponse> ESV=0x7* (3k=1,2), 0x7A not possible
Individual response
ECHONET ECHONET node ECHONET ECHONET node
node (with property) node (with property)
ESV=0x6% (*=1,2) O
ESV=0x63
ESV=0x53% (*=1,2) Processing ‘J ESV=0x73 |
not possible <
Individual response broadcast
ECHONET ECHONET node (with object & ECHONET ECHONET node
node without property) node (without object)

Q Q

= k(k=0~
ESV=0x6+ (+ =0~3,) ESV=63 (5 =0~ 3,E)
i 0x74
[ESV=0x5xGk=0~3E) | |Processing
not possible <No response>
Individual response
ECHONET ECHONET node
node (with property)

? | ESV=0x73 |

Autonomous notification
(individual/arbitrary broadcast)

Fig. 3. 6 Sequence Diagram for ESV Transmission and Reception

3-9

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECTFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification ‘Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM

(1) Property value write service (no response required)[0x60, 0x50]

In the case of a “request” (0x60), this indicates a request to write the content shown in the EDT to
the property stipulated in the EPC of the DEOJ-stipulated object. When more than one property is
stipulated, the writing sequence is not specified.

When the request is not accepted, or when the stipulated DEOJ exists but the stipulated EPC does
not exist, “response not possible” (0x50) is returned. When the specified DEOJ exists but there are
too many target properties of control request to process them all, the number of properties processed
from the beginning is stored in OPC and "response not possible™ (0x50) is returned as a response.
Then the destination address of the lower communication layer shall be the source of "request” (the
source address of the "request” message in the lower communication layer).

When the relevant object itself does not exist, neither “response” nor “response not possible” is
returned. (See Fig. 3.6 for the exchange procedure.)

EDATA configuration for "response not possible"

(When the request is accepted, or when the stipulated DEOJ exist s but the stipulated EPC does not exist)
ey pros |msv |opc [EPC |PDC EPC |PDC |EDT EPC |PDC
1 1 i Y m m == n n
0x50 n - J - _/ . J
Response 1 Response m Response n
. X rocessing not . .
EDATA configuration for "request’ ﬁrocessmg possible ﬁossible *Processmg possible
. proj |msv |opc |EPC |PDC [EDT | |EPC [PDC | EDT | __|EPC |PDC | EDT
1 1 1 m m m n n n
) 0x60 n - - A >
% Request 1 Request m Request n
#rocessing possible +Processing not possible

EDATA configuration for “response not possible"
(When the specified DEOJ exists but there are too many target properties of control request to process all)

EPC|PDC . EPC|PDC| EDT

1 1 (" m | m m

- m \ J N\ J
0x50 Response 1 Response m

SEOJ | DEOJ |ESv|opd

Fig. 3. 7 EDATA configuration for property value write service (no response required)
(2) Property value write service (response required)[0x61,0x71,0x51]

In the case of “request” (0x61), this indicates a request to write the content shown in the EDT to the
property stipulated in the EPC of the DEQJ-stipulated object. When more than one property is
stipulated, the writing sequence is not specified.

In response to this “request,” when the request is to be (or has already been) accepted, a “response”
(0x71) is returned. However, this “response” is not a processing implementation response. In the
frame format for response, the value of the object stipulated by the request is set in the SEQJ, and
the same value as for the request is set in the OPC. In the EPC, the same property code for the
request is set. To indicate that the request was accepted, the PDC is set to 0 and no EDT is attached.

When the request is not accepted, or when the stipulated DEOJ exists but the stipulated EPC does
not exist, “response not possible” (0x51) is returned. In the same way as for a message of
"response,” the request-stipulated object value is set in the SEQJ, the request-source object value in
the DEOJ, the same value as for the request in the OPC, and the same property code for the request
in the EPC for a message of "response not possible.” For the EPC that accepted the request, 0 is set

3-10

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECTFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification ‘Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM

in the succeeding PDC and no EDT is attached. For the EPC that did not accept the request, the
same value as for the request is set in the succeeding PDC and the requested EDT is attached to
indicate that the request could not be accepted.

When the stipulated DEOJ exists but there are too many properties subject to control requests to
process them all, the number of properties processed from the beginning (following a judgment on
whether the request is accepted or not) is set in the OPC and “response not possible” (0x51) is
returned as a response. The value settings for PDC and EDT shall be the same as in normal cases of
response not possible. In this case, the responding side can determine the number of property
values to be returned; however, the sequence of such properties must be the same as in the request
message.

When the relevant object itself does not exist, neither “response” nor “response not possible” is
returned (see Fig. 3.6 for the sequence). Whether a response is possible or not, the destination
address of the lower communication layer shall be the source of "request” (the source address of the
"request” message in the lower communication layer).

EDATA configuration for "response not possible"

SEOJ DEOJ Esv|oprd] EPC|PDC EPC|PDC|EDT EPC|PDC
1 1 | m m m [*"" n n
0x51 n \ y, N\ J I\ J
Response 1 Response m Response n
T Processing Processing not T Processing
EDATA configuration for "request” possible possible possible
SEOJ DEOJ Esv| opC] EPC|PDC| EDT | __|EPC(PDC| EDT | |EPC|PDC EDT
1 1 1 m m m n n n
0x61 n -~ J - J - /
Requestl Request m Request n
¢ Processing Processing /Processing
EDATA configuration for "response” possible possible possible
SEOJ DEOJ |Esv]|opc/EPC|PDC|... [EPC[PDC| ... |EPC|PDC
1 1 m m n n
0x71 n “— 7 7
Response 1 Response m Response n

Fig. 3. 8 EDATA configuration for property value write service (response required)
(3) Property value read service [0x62,0x72,0x52]

In the case of “read” (0x62), this indicates a request to read EPC-stipulated properties from the
DEOJ-stipulated object. When more than one property is stipulated, the reading sequence is not
specified. For messages in the case of a request, the PDC is set to 0.

When the request is to be (or has already been) accepted for all properties, a “response” (0x72) is
returned. In the frame format for response, the value of the object stipulated by the request is set in
the SEOJ, and the value of the request-source object in the DEQOJ. In the OPC, the same value as for
the request is set. To indicate that the request was accepted, the length of the read property is set in
the PDC and the read property value in the EDT.

When the request is not accepted, or when the stipulated DEOJ exists but the stipulated EPC does
not exist, “response not possible” (0x52) is returned. In the same way as for a message of
"response,” the request-stipulated object value is set in the SEQJ, the request-source object value in
the DEQJ, the same value as for the request in the OPC, and the same property code for the request
in the EPC for a message of "response not possible.” For the EPC that accepted the request, the
length of the read property is set in the succeeding PDC and the read property value in the EDT. For

3-11

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECTFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification ‘Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM

the EPC that did not accept the request, 0 is set in the succeeding PDC and no EDT is attached to
indicate that the request was not accepted.

When the stipulated DEOJ exists but there are too many properties subject to control requests to
process them all, or when not all of the read-requested property values can be returned because they
exceed the allowable message length, the number of properties processed from the beginning
(following a judgment on whether the request is accepted or not) is stored in the OPC and “response
not possible” (0x52) is returned as a response. The value settings for PDC and EDT shall be the
same as in normal cases of response not possible. In this case, the responding side can determine the
number of property values to be returned; however, the sequence of such properties must be the
same as in the request message.

When the relevant object itself does not exist, neither “response” nor “response not possible” is
returned (see Fig. 3.6 for the sequence). Whether a response is possible or not, the destination
address of the lower communication layer shall be the source of "request” (the source address of the
"request” message in the lower communication layer).

EDATA configuration for "response not possible"

EPC|PDC| EDT | ., |EPC|PDC| ,, |EPC|PDC| EDT
1 1

SEOJ DEOJ ESV | OPC 1 - - - = -

0x52 n

Response 1 Response m Response n

Lrocessing possible TProcessmg not

EDATA configuration for "request” possible TProcessing possible

EPC |PDC EPC|PDC EPC|(PDC
SEOJ DEOJ ESV | OPC 1 1 wunn m m wunn n n
) D D
0x62 Request 1 Request m Request n
X lProcessing possible lProcessing possible\iocessing possible
EDATA configuration for "response"
EPC |PDC| EDT EPC|PDC| EDT EPC|PDC EDT
SEOJ DEOJ ESV | OPC 1 1 1 nann o - m | n o o
0x72 n J
Response 1 Response m Response n

Fig. 3. 9 EDATA configuration for property value read service
(4) Property value write & read service [0x6E,0x7E,0x5E]

"Write & read” (OX6E) indicates a service to process two requests by a single message: a request for
writing EDT-stipulated contents into EPC-stipulated properties of a DEOJ-stipulated object and a
request for the contents of EPC-stipulated properties from a DEOJ-stipulated object. The number of
write-requested properties is stored in OPCSet and that of read-requested properties is set in
OPCGet. The PDC corresponding to a read-requested EPC is set to 0. The sequence of processing
write-requests and read-requests is not specified. That is, whether the value before or after the
completion of write-request processing is stored as a response to a property stipulated in a
read-request depends on the actual implementation. Similarly, if more than one property is
stipulated in both write-request and read-request, the sequence of processing for each property is
not specified.

When the request is to be (or has already been) accepted, a “response” (OX7E) is returned. In the
frame format for response, the value of the object stipulated by the request is set in the SEOJ and
the request-source object value in the DEOJ. The same value as for the request is set in OPCSet,

3-12

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECTFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification ‘Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM

and the same property code for the request is set in the EPCs set. The PDC is set to 0 and no EDT is
attached. The OPCGet for the request is set in OPCGet, the same property code for the request in
the EPC, the length of the read property in the PDC, and the read property value in the EDT.

When the request is not accepted, or when the stipulated DEOJ exists but the stipulated EPC does
not exist, “response not possible” (OX5E) is returned. When the specified DEOJ exists but there are
too many target properties of control request to process, or all the property values requested for
write or read cannot be returned because the allowable message length is too short, the number of
properties processed from the beginning is stored in OPCSet and OPCGet. Then "response not
possible” (OX5E) is returned as a response. In this case, the responding side can determine the
number of property values to be returned; however, the sequence of such properties must be the
same as in the request message.

When the relevant object itself does not exist, neither “response” nor “response not possible” is
returned (see Fig. 3.6 for the sequence). Whether a response is possible or not, the destination
address of the lower communication layer shall be the source of "request” (the source address of the
"request” message in the lower communication layer).

EDATA configuration for "response not possible"

SEO. BEO ESV OPC | EPC | PDC | «as | EPC | PDC [EDT|OPC|EPC | PDC | ... | EPC|PDC EDT
Set 1 1 m m m | Get | m+1 | m+1 n n n
0x5E m n-m\)
% Response 1 Response m Response m+1 Response n
A
’ : Processing Processing " :
- ‘ IProcessmg possible Inot possible not possible Proces%ng possible
EDATA configuration for "request”
OPC | EPC | PDC | EDT |...| EPC|PDC |EDT [OPC| EPC | PDC |...| EPC | PDC
<
$EO. DEOJ ESV Set | 1 1 1 m m | m | Get|m+l| M+ n n
Ox6E m n-m
Request 1 Request m Request m+1 Request n
lProcessing possiblel Processing possible l Prokessing possible
EDATA configuration for "response” Ryocessing possibl
OPC | EPC | PDC EPC | PDC |OPC| EPC [PDC | EDT EPC [PDC| EDT
HEOY DEO. e Set 1 1" m m | Get | m+1 [m+1 me |7 n n n
0x7TE m \ n-m =
Response 1 Response m Response m+1 Response n

Fig. 3. 10 EDATA configuration for property value write & read service

This service is an option. If a node not supporting this option receives a request for the service, the
message will be discarded if the stipulated DEOJ is not incorporated. If the stipulated DEQOJ is
incorporated, 0 will be stored in OPCSet and 0 in OPCGet, and “response not possible” (0x5E) will
be returned as a response.

(5) Property value notification service [0x63,0x73,0x53]

There are two types of “notification”: the notification sent as a response to a “notify request” (0x63)
and the autonomous notification, which is unrelated to notify requests. The codes for these two
types are identical. (Here, notification in response to a “notify request” signifies an announcement
that does not specify the property value [content], while an autonomous notification is a voluntary
announcement that was not made in response to a request.) In the case of a “notify request” (0x63),
this indicates a request to notify (by broadcast simultaneously; hereafter “announce” will signify a
broadcast) the content of the property stipulated in the EPC of the DEOJ-stipulated object. For
messages in the case of a request, the PDC is set to 0. When more than one property is stipulated,

3-13

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECTFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification ‘Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM

the notification sequence is not specified.

In response to this “notify request,” when the request is to be accepted, a “response” (0x73) value is
notified. The request-stipulated object value is set in the SEQJ, the request-source object value in
the DEOJ, and the same value as for the request in the OPC. The same property code as for the
request is set in the EPC and the property length of notification is set in the PDC. In the EDT, the
requested property value (contents of notification) is stored. For broadcast, destination addresses in
lower communication layers are set.

When the request is not accepted, or when the stipulated DEOJ exists but the stipulated EPC does
not exist, “response not possible” (0x53) is returned. In the same way as for a message of
"response,” the request-stipulated object value is set in the SEQJ, the request-source object value in
the DEOJ, the same value as for the request in the OPC, and the same property code for the request
in the EPC for a message of "response not possible."” For the EPC that accepted the request, the
length of the read property is set in the succeeding PDC and the read property value in the EDT. For
the EPC that did not accept the request, O is set in the succeeding PDC and no EDT is attached to
indicate that the request was not accepted. When the specified DEOJ exists but there are too many
target properties of control request to process, or the property value (contents of notification)
requested for read cannot be returned because the allowable message length is too short, the number
of properties processed from the beginning is stored in the OPC, the same property code for the
request in the EPC, the length of the read property in the PDC, and the read property value in the
EDT. Then "response not possible™ (0x53) is returned as a response. In this case, the responding
side can determine the number of property values to be returned. Also for a response not possible,
the address of the lower communication layer of the request source shall be set as the destination
address of the lower communication layer. When the relevant object itself does not exist, neither
“response” nor “response not possible” is returned. (See Fig. 3.6 for the sequence.) In the case of an
autonomous “notification”, the DEA is set to a broadcast for a required status change notification.
In the other cases, however, the destination of the lower communication layer can be set arbitrarily
for broadcast or individual transmission.

For an autonomous "notification,” a node profile class is stored because there is no EOJ to be set in
the DEQJ in particular.

EDATA configuration for "response not possible"

EPC|(PDC| EDT EPC|(PDC EPC|PDC EDT
SEOJ BEO. ESV [OPC| 1 1 m m | n n n
0x53 n
Response 1 Response m Response n
Processing possible {Pr?cessq;)gl] IProcessing possible
EDATA configuration for "request" not possible
EPC|PDC EPC [PDC EPC|PDC
SEOJ BEO. ESV|OPC| T R m | n n
0x63 n — J)
Request 1 Request m Request n
Processing possible Processing possible \Processing possible
EDATA configuration for "response*
EDATA configuration for autonomous "notification”
EPC|PDC| EDT EPC|PDC| EDT EPC | PDC EDT
SEOJ DEOJ ESV | OPC 1 1 1 T - - m | n n n
0x73 n J
Response 1 Response m Response n
Notification 1 Notification m Notification n

Fig. 3. 11 EDATA configuration for property value notification service
3-14

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECTFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification ‘Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM

(6) Property value notification (response required)[0x74, 0x7Al

The “notification (response required)” (0x74) autonomously notifies a specific node of the property
value stipulated by the EPC of the SEOJ-stipulated object and requests a response. When more than
one property is stipulated, the notification sequence is not specified. The response process for this
“notification (response required)” varies depending on whether or not the DEQJ is specified.

Processing varies depending on whether the specified DEOJ exists. When the specified DEOJ exists,
a “response” (0x7A) for autonomous notification reception is returned. In a response message, the
requested object value is set in the SEOJ and the request-source object value in the DEOJ. The same
value as for notification is set in the OPC and the same property code as for notification is set in the
EPC. To indicate that the notification was received, the PDC is set to 0 and no EDT is attached.

When the specified DEOJ does not exist, the message shall be discarded.

EDATA configuration for "notification (response required)”

EPC|PDC| EDT EPC|PDC| EDT EPC|PDC EDT

SEO. DBEOJ ESVIOPC| 1 1 | m | m m | n N n

0x74 m J N J - J
}g Notification 1 Notification m Notification n
lProcessing possible lpro"essmg pi%rocessing possible

EDATA configuration for "notify response"

EPC|PDC EPC|PDC EPC|PDC

SEOJ DEO. ESV [OPC 1 i - — - M -
0x7A° m — ____J N S

Response 1 Response m Response n

Fig. 3. 12 EDATA configuration for property value notification (response required) service

The services shown in Table 3.9, 3.10 and 3.11 above are specified for each property. Regarding
those stipulated as services that must be incorporated in each property, if they have the functions of
that property and disclose via communications (read/write/notification, etc.), this indicates that they
must be processed. The processing of services for each property is specified in the Access Rules
column of the object class detailed specification tables in “APPENDIX, Detailed Requirements for
ECHONET Device objects.” Access rules indicate all services that can be implemented. In this
Specification, the following three access rules are specified:

Set : Processes services related to write requests for property values
(Performs processing indicated in (1) and (2))

Get : Processes services related to read requests for property values
(Performs processing indicated in (3) and (5))

Anno : Processes non-array property value notification services

(Performs processing indicated in (5) and (6))
The above processing is specified for each property.
3. 2. 6 Processing Target Property Counters (OPC, OPCSet, and

3-15

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECTFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification ‘Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM

OPCGet)

A target property counter consists of 1 byte. If the ESV service is for writing, reading, or notifying
property values, the number of properties to be written, read, or notified is held, respectively. For
the write or read service by ESV, the number of properties to be written is held in OPCSet and that
of properties to be read is held in OPCGet.

The minimum value of a processing target counter is 1 and its maximum value is limited by the
message length by lower communication media in transmission and reception. The value of the
processing target counter can be 0 only in the condition of SetGet_ SNA.

If, for instance, there are three requests as shown in Fig. 3.13, the processing target property counter
is 0x03.

EPC|PDC| EDT | EPC|PDC|EDT| EPC|PDC EDT
SEOJ DEOJ ESV | OPC 1 1 1 9 9 9 3 3 3
0x62 0x03_ A N J
Request 1 Request 2 Request 3

Fig. 3. 13 Processing Target Property Counter for Three Requests

3. 2. 7 ECHONET Property (EPC)

This section provides detailed specifications for the ECHONET property (EPC) code shown in Fig.
3. 1. The EPC specifies a service target function. Each object stipulated by X1 (class group code)
and X2 (class code), described in the previous section, is specified here. (When a specified object
changes, the target function also changes even when the code remains unchanged. However, the
detailed specifications are designed to ensure that, whenever possible, the same functions will have
the same code.) Specific code values for each object are stipulated in “APPENDIX, Detailed
Requirements for ECHONET Device objects.” These codes correspond to the object property
identifiers in the object definitions. However, an ECHONET Lite node will not support the array
element EPC specified in “APPENDIX, Detailed Requirements for ECHONET Device objects.”

b7 b6 b5 b4 b3 b2 bl b0
I RAq RAd bA PAQ AR A gl A g
i i

Stipulated for four regions: shared by all objects;
shared by each object super class; unique to
eac? object class; and user-defined. (See Table
4.9,

Fixed

Note: When b7 = 0, the other bits will be defined differently.

Fig. 3. 14 EPC Detailed Specifications

3-16

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012

II ECHONET Lite Communication Middleware Specification Version 1.01
3 Message Structure (Frame Format) ECHONET CONSORTIUM
Table 3.12 EPC Code Allocation Table
8 9 A B C D E F —b7-b4 values

0 (hex)

1

2

3

4

5

6

7 Region shared | Region shared Region unique to__ | User- |

8 by all object by each class each class™ define

9 classes [group® T — [dt

A

B

C

D

E

F

T

b3-b0 values
(hex)

Notes: 1) Stipulated for each user. In the case of a user-defined object class, 0xA to OxF in the four high-order bits
(b7 to b4) are user-defined.
2) These two regions are used in principle, but in practice the boundary line will change for each class
group. Individual regions will be specified in the object class detailed specifications in Chapter 6 and
"APPENDIX, Detailed Requirements for ECHONET Device objects."

3. 2. 8 Property Data Counter (PDC)

The property data counter retains the number of bytes in ECHONET Property Value Data (EDT). If,
for instance, the ECHONET Property Value Data sizes for Requests 1, 2, and 3 are 2 bytes, 1 byte,
and 5 bytes, respectively, the values placed in the first, second, and third property data counters are
0x02, 0x01, and 0x05, respectively, as shown in Fig. 3.15 In the case of read-requests, the value of
PDC is 0x00.

0x02 2byte 0x01 lbyte 0x05 Sbyte
d EPC|PDC| EDT [EPC|PDC|EDT|EPC |PDC EDT
SEOJ DEOJ ESV|OPC| 1 1 9 9 9 3 3 3
0x62 N I\ N)
Request 1 Request 2 Request 3

Fig. 3. 15 Property Data Counter

3. 2. 9 ECHONET Property Value Data (EDT)

This section presents detailed code specifications for the ECHONET property value data (EDT)
range shown in Fig. 3. 1. EDT consists of data for the relevant ECHONET property (EPC), such as
status notification or specific setting and control by an ECHONET Lite service (ESV). Detailed
specifications are provided for the size, code value, etc. of the EDT for each EPC (see “APPENDIX,
Detailed Requirements for ECHONET Device objects”).

3-17

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012
II ECHONET Lite Communication Middleware Specification Version 1.01
4 Basic Sequences ECHONET CONSORTIUM

Chapter 4 Basic Sequences
4. 1 Basic Concept

Of the sequences exchanged between the ECHONET Lite Communication Middleware for nodes
connected to the ECHONET Lite network, those that must be implemented are called “basic
sequences.” This chapter divides these basic sequences into two main categories for specification:

(1) Basic sequences for object control
(2) Basic sequences for node startup

Depending on the type of device, some of the basic sequences specified in this chapter, all of which
are required, involve complex exchanges and thus entail much heavier communications processing
than application processing. Therefore, the specifications were formulated to make the sequences as
simple as possible.

The ECHONET Lite Communications Processing Block's internal processing sequence that is
performed at node startup is described in Section 5.4 “Startup Processing”.

4. 2 Basic Sequences for Object Control

ECHONET Lite Communication Middleware exchanges are performed by stipulating the service
(ESV: ECHONET Lite service) with respect to the object property specified in the previous section.
Basic sequences for objects can be broadly divided into basic sequences for object control in
general and basic sequences for service content (see below). These two types are described below.

(1) Basic sequences for object control in general
(2) Basic sequences for service content

4. 2. 1 Basic Sequences for Object Control in General

The ECHONET Lite Communication Middleware performs the following four processes as basic
processing when it receives a service (specified in Table 3.9 to Table 11) for an object property. The
first three processes are described here. The fourth process (D) is described in the next section
under Basic Sequences for Service Content.

(A) Processing when the controlled object does not exist

(B) Processing when the controlled object exists but the controlled property does not exist, the
control content cannot be interpreted, or only some properties of the controlled object can
be processed

(C) Processing when the controlled property exists but the stipulated service processing
functions are not available

(D) Processing when the controlled property exists and the stipulated service processing
functions are available

4-1

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012
II ECHONET Lite Communication Middleware Specification Version 1.01
4 Basic Sequences ECHONET CONSORTIUM

(A) Processing when the controlled object does not exist
The ECHONET Lite node receiving message discards the received ECHONET Lite message and
returns no response.

ECHONET Lite node

7

Message*1 »{

* Note: Message stipulating a : :
DEOJ that does not exist in the Dlsﬁggea%(gved
destination ECHONET node (return no response)

|

~

Fig. 4. 1 Basic Sequence When Controlled Object Does Not Exist

(B) Processing when the controlled object exists but the controlled property does not exist, the
control content cannot be interpreted, or only some properties of the controlled object can be
processed

The processing not possible response (ESV=0x50-0x5F) is returned in response to the received
ECHONET Lite message. The figure below shows the basic sequence that is performed when a
received request ESV = 0x6# (#: 0 to F).

ECHONET Lite node

7

Regquest message with ESV = Ox6# L~

>

Discard received message|
(“response not possible”
must be returned)

Response message with ESV = Ox5#

A

~

Fig. 4. 2 Basic Sequence When Controlled Object Exits but Controlled Property Does Not
Exist, Control Content Cannot be Interpreted, or Only Some Properties of Controlled Object
Can Be Processed

(C) Processing when the controlled property exists but the stipulated service processing functions
are not available

Processing similar to that in (B)

4-2

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012
II ECHONET Lite Communication Middleware Specification Version 1.01
4 Basic Sequences ECHONET CONSORTIUM

4. 2. 2 Basic Sequences for Service Content

The ECHONET Lite Communication Middleware has three basic processing sequences for the
reception of object property-related services (specified in the table), assuming the stipulated
property exists and has service functions:

(A) Basic sequence for receiving a request (no response required)
(B) Basic sequence for receiving a request (response required)
(C) Basic sequence for property value notification (autonomous notification)

(A) Basic sequence for receiving a request (no response required)
There are some operations (ESV = 0x60 to Ox6E) that an ECHONET Lite node performs in relation

to properties. The figure below shows the ECHONET Lite node's basic sequence that is performed
upon receipt of ESV = 0x60:

ECHONET Lite node

?

~

Request message with ESV = 0x60

[
>

Property value control
(write) request received

~

Fig. 4. 3 Basic Request Receiving Sequence for ESV = 0x60
(B) Basic sequence for receiving a request (response required)

The figure below shows the basic sequence, for each ESV, for an ECHONET Lite node that has
received a property value-related manipulation from another ECHONET Lite node (ESV = 0x60 to
Ox6E), where ESV = 0x61 to 0x63.
Basic request receiving sequence for ESV = 0x6* (*: 1,2,E)
(Response is returned to request message source)

ECHONET Lite node

?

~

Request message with ESV = Ox6*

»

Property value control (write or read) request
received

Response message with ESV = Ox7*

4-3

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012
II ECHONET Lite Communication Middleware Specification Version 1.01
4 Basic Sequences ECHONET CONSORTIUM

Basic request receiving sequence for ESV = 0x6# #: 3)
(Response returned using broadcast)

ECHONET Lite node

7

~

Request message with ESV = Ox6#

»

Property value control
(notify) request received

A

Response message with ESV = Ox7# #

~

I
Fig. 4. 4 Basic Request Receiving Sequence for ESV = 0x6a(a:1 to 3, E)

(C) Basic sequence for property value notification

The figure below shows the basic sequence for properties that are required to notify their status
when the object property value changes (i.e., when there is a change in the status setting from the
application software).

ECHONET Lite node

I

~

Object control request
status change

Broadcast message with ESV = Ox7*

* .3

A
N

Fig. 4. 5 Basic Property Value Notification Sequence

4. 3 Basic Sequence for ECHONET Lite Node Startup

For the ECHONET Lite nodes described in this section, startup begins with the acquisition of a
communication address for self-recognition and specification. This section specifies the startup
sequences, assuming that the communication address has already been obtained when the
ECHONET Lite Communication Middleware begins operation.

4-4

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5, 2012
II ECHONET Lite Communication Middleware Specification Version 1.01
4 Basic Sequences ECHONET CONSORTIUM

4. 3. 1 Basic Sequence for ECHONET Lite Node Start

The figure below shows the basic sequence that an ECHONET Lite node does at a start.
This processing is also executed when a communication address is changed.

New startup
ECHONET Lite node

Q

Internal intial processing
Communication address
set/completion

Message (3): Instance list naotification

A
\ 4

(Broadcast) !
When the number of instances to be notified of by
an instance list exceeds the maximum value,
several messages are used for transmission. See
(9) in "Node Profile Class: Detailed Specifications."

Message (1) | - Stipulates node profile objects (OXOEF001) with SEOJ.

« Stipulates node profile objects (OXOEF001) with DEOJ

« Stipulates instance list notification properties (0xD5) by EPC.
« Stipulates notification (0x73) by ESV.

+ Stipulates instance list information in EDT=self node.

Fig. 4. 6 Basic Sequence for ECHONET Lite Node Startup (1)

4-5

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

IT ECHONET Lite Communication Middleware Specification Date: Mar. 5, 2012
5 ECHONET Lite Communications Processing Block Processing Version 1.01
Specifications ECHONET CONSORTIUM

Chapter 5 ECHONET Lite Communications Processing Block Processing
Specifications

5. 1 Basic Concept

This section presents the specifications for ECHONET Lite communications processing in the
ECHONET Lite Communication Middleware as shown in the figure below. Note that the processes
shown in the figure are used simply to describe basic processing in the ECHONET Lite
Communications Processing Block and are not intended as specifications for actual software

structure.

(1) Object processing
(2) Send message assembly and management processing
(3) Startup processing

Application EX. EX. Ex.
EMS application Refrigerator application A/C application
ECHONET Lite
Communication Processing Device objects
Block
x_ Object processing

Startup
rocessin

Send message creation and
manaaement

Fig. 5. 1 Overview of Communication Middleware Processing (Layer Configuration)

Profile objects

Lower communication
layers

5. 2 Object Processing Specifications

In the ECHONET Lite Communications Processing Block, device functions are expressed as
objects, and through these objects operations are performed between nodes. See Chapter 2 and
“APPENDIX, Detailed Requirements for ECHONET Device objects.” for detailed information on
objects. This section gives the object processing specifications below.

5-1

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

IT ECHONET Lite Communication Middleware Specification Date: Mar. 5, 2012
5 ECHONET Lite Communications Processing Block Processing Version 1.01
Specifications ECHONET CONSORTIUM

Processing using operation data from application software can be divided into two main categories:
current device object® processing and other device object? processing. Object processing (1) uses
data for all objects. When setting or control (read/write) data is received from application software,
the block first determines which type of object the data concerns and then performs the appropriate
processing. Processing specifications for the two categories are described below.

Notes:*1. Objects corresponding to functions that are actually present on the self-node. Includes
communications definition objects, profile objects, and device objects. Can be referenced and
controlled from other nodes.

*2. Objects corresponding to functions not present in the self-node which designed to control the
status of other nodes. Includes communications definition objects, profile objects, and device
objects.

(1) Current device object processing specifications
When the data (reference/control content) is received from application software and the
stipulated object and property exist, processing is performed in accordance with the request
stipulated in application software processing.

(2) Other device object processing specifications
The data (reference/control content) is received from application software, the stipulated object
and property data and the destination address data are handed off to send message
creation/management processing, and processing is terminated.

When content received from the application software is stipulated for initial processing, processing
is handed off to startup processing.

5. 3 Send Message Creation/Management Processing

When the data necessary to create an ECHONET Lite message is received from startup processing
or object processing, the data required for an ECHONET Lite message, such as ECHONET Lite
header (EHD), is added to create the message and send it through the lower communication
interface.

5. 4 Startup Processing

When communication address setting is completed, the startup sequence processing specified in
Chapter 4 is performed, and the message data to be transmitted is handed off to send message
creation/management processing. The system then waits for the required data to be written to the
object in line with the sequence and, if necessary, performs time-out management and sends the
next message to complete startup processing.

When startup processing is completed, the object property value indicating the status of the
Communications Middleware is set, and processing is terminated.

5. 5 Description of Processing Functions

Table 5.1 shows a list of the functions processed in the ECHONET Lite Communications
Processing Block, together with the implementation status. The “implementation status” column

52

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

IT ECHONET Lite Communication Middleware Specification Date: Mar. 5, 2012
5 ECHONET Lite Communications Processing Block Processing Version 1.01
Specifications ECHONET CONSORTIUM

indicates whether or not the given function is required. The function numbers shown in the first
column are used as symbols when presenting the processing functions of the ECHONET Lite
Communications Processing Block.

Table 5.1 List of ECHONET Lite Communications Processing Block Functions

Function Imple
Fur’llcglon (Overview) n:;aonr:a Remarks
Status
M2 |a | Processing of basic sequence for object control in | Mand
general atory
Processing functions in Section 4. 2
b | Set processing Mand | Required because node
Processing functions in Section 3. 2. 5.(2) | atory | profile class must be
Returns “response_” |mp|ementEd leferS
c Get processing from services that must
Processing functions in Section 3. 2. be processed for each
property

5(3)Returns “response.”

d | Property value notification processing

Processing functions in Section 3. 2. 5(5) and
(6) Returns “response” and sends “autonomous
notification.”

e | SetGet processing

Processing functions in Section 3. 2. 5. (4)
Returns “response.”

A | Get extended processing

When a Get “request” is received, returns object
property value held in Communications
Middleware.

B | SetGet extended processing

When a Set Get “request” is received, returns
object property value held in Communications
Middleware.

C | Property value notification extended processing
When a property value notification “request” is

received, returns object property value held in
Communications Middleware.

(i.e., not required for all
properties).

E | Other device object status management processing
1)

When a “request” to read a property held as other
device objects is received, the property value of
the other device object held in Communications
Middleware is changed to the notified value.

F | Other device object status management processing

(2)

5-3

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

IT ECHONET Lite Communication Middleware Specification Date: Mar. 5, 2012
5 ECHONET Lite Communications Processing Block Processing Version 1.01
Specifications ECHONET CONSORTIUM

When a status notification for a property held as
other device objects is received, the property value
of the other device object held in Communications
Middleware is changed to the notified value.

G | Other device object status management processing
®3)

When a status announcement for or a “request” to
read a property not held as other device objects is
received, the received message is discarded.

H | Other device object status management processing
(4)

When a status announcement for or a “request” to
read a property not held as other device objects is
received, the received message is not discarded,
and the application is notified.

| | Self device object management processing (1)
“Requests” for properties not held as current

device objects are not discarded, and the
application is notified.

J | Self device object management processing (2)

When a “request” for properties held as current
device objects is received, a receipt response is
returned, and the application is notified of the

“request.”
M5 | a | Send message creation/management processing Mand
Processing functions in Section 5. 3 atory

5-4

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION Date: Mar. 5. 2012
II ECHONET Lite Communication Middleware Specification Versior; 1.01
6 ECHONET Objects: Detailed Specifications ECHONET CONSORTIUM

Chapter 6 ECHONET Objects: Detailed Specifications
6. 1 Basic Concept

This section specifies specific values for the class codes of ECHONET objects processed in the
ECHONET Lite Communication Middleware, whose types and overview were given in Chapter 2,
along with property configurations and their detailed specifications. ECHONET objects described
in this chapter and in “APPENDIX, Detailed Requirements for ECHONET Device objects” are
divided into two main classes: device objects and profile objects. In terms of the code structure,
they are divided into the class groups shown below. After presenting the shared ECHONET
property specifications and object super classes that form ECHONET objects, this chapter will
provide guidelines for each class group (except for the service group) and details for each class.

(1) Device objects
Sensor-related device class group
Air conditioning-related device class group
Housing-related device class group
Cooking/housework-related device class group
Health-related device class group
Management and control-related device class group
AV-related device class group

(2) Profile objects
Profile class group

Detailed specifications for each device object class are provided in “APPENDIX, Detailed
Requirements for ECHONET Device objects."

Each ECHONET Lite node must implement a device object and a node profile class.

6. 2 ECHONET Properties: Basic Specifications

This section discusses the specifications shared by all ECHONET object classes, the details of
which are provided in this section and in “APPENDIX, Detailed Requirements for ECHONET
Device objects.”

6. 2. 1 ECHONET Property Value Data Types

The ECHONET property value is expressed as an unsigned integer when the value is a
non-negative integer value; it is expressed as a signed integer when the value is an integer value
containing negatives.

When the value is a small value, it is handled as a fixed point type; when it is a non-negative small
value, it is treated as an unsigned integer; and when it is a small value containing negatives, it is

6-1

© 2011 (2012) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION
II ECHONET Lite Communication Middleware Specification
6 ECHONET Objects: Detailed Specifications

Date: Mar. 5, 2012
Version 1.01
ECHONET CONSORTIUM

treated as a signed integer. Data types and sizes are specified individually for each property.

Although property data size is specified individually for each property, property value data of 2
bytes or larger comprises ECHONET Lite Communication Middleware data as ECHONET property
value data (EDT) beginning from the most significant byte.

6. 2. 2 ECHONET Property Value Range

The definition range for the ECHONET properties specified in this chapter and “APPENDIX,
Detailed Requirements for ECHONET Device objects,” and the treatment of property values when
the corresponding actual device property value operating range is not in agreement, are specified

below.

1)

()

When the actual device property value operating range corresponding to the ECHONET
property is smaller than the ECHONET property definition range and the actual device
property value assumes the upper or lower limit value, the upper or lower limit value of the
operating range is considered to be the property value.

Assuming that the ECHONET property definition range is 0x00-0xFD (0°C-253°C) and
the corresponding actual device operating range is 0X0A-0x32 (10°C-50°C), when the
actual device property value is the upper limit (50°C) of the operating range, the upper limit
value 0x32 (50°C) of the actual device operating range is considered as the ECHONET
property value, and when the actual device property value is the lower limit value (10°C),
the lower limit value 0X0A (10°C) is considered to be the ECHONET property value.

When the actual device property value operating range corresponding to the ECHONET
property is larger than the ECHONET property definition range and the actual device
property value assumes a value outside the ECHONET property definition range, a code
showing an underflow or overflow becomes the property value.

Assuming that the ECHONET property definition range is 0x00-0xFD
(0°C—253°C) and the corresponding actual device operating range is —10°C to
300°C, when the actual device property value assumes a value below the
ECHONET property definition range, the underflow code OxFE becomes the
property value; when the actual device property value assumes a value above
the ECHONET property definition range, the overflow code OxFF becomes the
property value.

Table 6.1 shows the underflow and overflow codes for each data type.

Table 6.1 Data Types, Data Sizes, and Overflow/Underflow Codes

DATATYPE DATA SIZE UNDERFLOW OVERFLOW
signed char 1 Byte 0x80 OX7F
signed short 2 Byte 0x8000 OX7FFF
signed long 4 Byte