

- i -

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Part II

ECHONET Lite

Communication Middleware Specification

- ii -

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

The specifications published by the ECHONET Consortium are established without regard to
industrial property rights (e.g., patent and utility model rights). In no event will the ECHONET
Consortium be responsible for industrial property rights to the contents of its specifications.

In no event will the publisher of this specification be liable to you for any damages arising out
of use of these specifications.

The original language of The ECHONET Lite Specification is Japanese. The English version of
the Specification was translated the Japanese version. Queries in the English version should be
refereed to the Japanese version.

- iii -

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Contents

Chapter 1 Overview ... 1-1

1．1 BASIC CONCEPT ... 1-1

1．2 POSITIONING ON COMMUNICATIONS LAYERS ... 1-1

1．3 REFERENCES ... 1-2

Chapter 2 ECHONET Objects ... 2-1

2．1 BASIC CONCEPT ... 2-1

2．2 DEVICE OBJECTS .. 2-1

2．3 PROFILE OBJECTS .. 2-2

2．4 ECHONET OBJECTS AS VIEWED FROM APPLICATION SOFTWARE .. 2-3

Chapter 3 Message Structure (Frame Format) .. 3-1

3．1 BASIC CONCEPT ... 3-1

3．2 FRAME FORMAT .. 3-1

3．2．1 ECHONET Lite Header (EHD) .. 3-2

3．2．2 Transaction ID (TID) ... 3-3

3．2．3 ECHONET Lite Data (EDATA) .. 3-4

3．2．4 ECHONET Object (EOJ) ... 3-4

3．2．5 ECHONET Lite Service (ESV) .. 3-5

3．2．6 Processing Target Property Counters (OPC, OPCSet, and OPCGet) 3-8

3．2．7 ECHONET Property (EPC) ... 3-8

3．2．8 Property Data Counter (PDC) ... 3-10

3．2．9 ECHONET Property Value Data (EDT) ... 3-10

Chapter 4 Basic Sequences .. 4-1

4．1 BASIC CONCEPT ... 4-1

4．2 BASIC SEQUENCES FOR OBJECT CONTROL .. 4-1

4．2．1 Basic Sequences for Service Content ... 4-1

4．2．2 Basic Sequences for Object Control in General .. 4-4

4．2．3 Detailed sequences concerning service content ... 4-6

4．3 BASIC SEQUENCE FOR ECHONET LITE NODE STARTUP ... 4-13

4．3．1 Basic Sequence for ECHONET Lite Node Start .. 4-13

Chapter 5 ECHONET Lite Communications Processing Block
 Processing Specifications .. 5-1

5．1 BASIC CONCEPT ... 5-1

5．2 OBJECT PROCESSING SPECIFICATIONS .. 5-1

5．3 SEND MESSAGE CREATION/MANAGEMENT PROCESSING ... 5-2

5．4 STARTUP PROCESSING ... 5-2

Chapter 6 ECHONET Objects: Detailed Specifications ... 6-1

6．1 BASIC CONCEPT ... 6-1

6．2 ECHONET PROPERTIES: BASIC SPECIFICATIONS ... 6-1

6．2．1 ECHONET Property Value Data Types ... 6-1

6．2．2 ECHONET Property Value Range... 6-2

- iv -

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

6．2．3 Class-specific Mandatory Properties ... 6-3

6．2．4 Properties that Must Have a Status Change Announcement Function 6-3

6．2．5 Access Rules .. 6-3

6．3 DEVICE OBJECT SUPER CLASS SPECIFICATIONS ... 6-3

6．3．1 Overview of Device Object Super Class Specifications ... 6-4

6．4 SENSOR-RELATED DEVICE CLASS GROUP OBJECTS: DETAILED SPECIFICATIONS 6-4

6．5 AIR CONDITIONING-RELATED DEVICE CLASS GROUP OBJECTS:

 DETAILED SPECIFICATIONS .. 6-4

6．6 HOUSING/EQUIPMENT-RELATED DEVICE CLASS GROUP OBJECTS:

 DETAILED SPECIFICATIONS .. 6-4

6．7 COOKING/HOUSEWORK-RELATED DEVICE CLASS GROUP OBJECTS:

 DETAILED SPECIFICATIONS .. 6-4

6．8 HEALTH-RELATED DEVICE CLASS GROUP OBJECTS: DETAILED SPECIFICATIONS 6-4

6．9 MANAGEMENT/CONTROL-RELATED DEVICE CLASS GROUP OBJECTS:

 DETAILED SPECIFICATIONS .. 6-4

6．10 PROFILE OBJECT CLASS GROUP SPECIFICATIONS .. 6-4

6．10．1 Overview of Profile Object Super Class Specifications.. 6-5

6．10．2 Property Map .. 6-5

6．11 PROFILE CLASS GROUP: DETAILED SPECIFICATIONS ... 6-6

6．11．1 Node Profile Class: Detailed Specifications ... 6-6

Appendix 1 Error Processing at Message Reception ... i

 1-1

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

1 Overview

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Chapter 1 Overview

1．1 Basic Concept

The ECHONET Lite Communication Middleware specifications indicated in this Part not only

concern the communication protocol but also include processing for the portion found between the

Application Software Block and the Lower-Layer Communications Software Block shown in the

next section (Section 1.2 "Positioning on Communications Layers"). The communication protocol

specifications are described in Chapters 2 to 4.

The ECHONET Lite Communication Middleware (hereinafter, simply referred to as

"Communication Middleware") specifications were designed primarily to enable concealment of

differences in Lower-Layer Transmission Medium from the perspective of the application layer.

1．2 Positioning on Communications Layers

Communication Middleware is positioned between Application Software and Lower-Layer

Communications Software. Specifications are provided in this Part. In Fig. 1.1, the shaded area

shows the Communication Middleware Block to be specified.

OSI Layer

7

6

5

4

3

2

1

Lower communication layers

(Layers 1 to 4 not defined)

Application

ECHONET Lite Communication

Processing Block

Device objects Profile objects

ECHONET Lite

Communication

Middleware

Fig. 1.1 Communication middleware

As Fig. 1.1 shows, the Communication Middleware Block specified in this document (Part 2)

consists of ECHONET Lite Communication Processing Block. The ECHONET Lite

Communication Processing Block is specified as a function not dependent on Layers 1 to 4. The

ECHONET Lite Communications Processing Block transmits and receives the ECHONET Lite

frames specified in Chapter 3. There are two types of transmission mode, namely individual

transmission and broadcast transmission. With individual transmission, destinations inside the

ECHONET Lite subnet are stipulated using an address in Layer 4 or lower, and ECHONET Lite

frames are transmitted to specific ECHONET Lite nodes. With broadcast transmission, destinations

 1-2

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

1 Overview

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

inside the ECHONET Lite subnet are stipulated using an address in Layer 4 or lower, and

ECHONET Lite frames are transmitted to all ECHONET Lite nodes inside the subnet. If a lower

communication layer (Layer 4 or lower) does not support multicast or broadcast, broadcast

transmission by ECHONET Lite may be achieved in unicast by transmitting to ECHONET Lite

devices connected inside the subnet. However, neither unicast destinations nor the method of setting

them is specified in this Specification; these shall be determined individually for each lower

communication layer used.

Security is not specified in the ECHONET Lite Communication Processing Block. By applying the

existing security standard technologies to Layer 4 or lower as required, security of ECHONET Lite

is ensured. See 2.2 in Part 5 for details.

When using the following protocol in Layer 4 or lower, it is mandatory to support specified

addresses and ports.

(1) Using UDP(User Datagram Protocol) in Layer 4 and Internet Protocol (IP) in Layer 3

Each ECHONET Lite node has its own IP address. The IP address range and acquisition method are

not specified. One ECHONET Lite frame is transferred by a single UDP packet. The destination

port number of a UDP packet is always 3610, irrespective of the type, such as request, response, or

notification. The source port number is not specified. For broadcast (simultaneous transmission),

ECHONET Lite frames are mapped on IP multicast packets and transferred. For IPv4, the

destination multicast address value shall be 224.0.23.0. For IPv6, ff02::1 (all-node multicast

address) shall be used. An ECHONET Lite node waits for UDP unicast and multicast packets at port

3610. If security is necessary in Layer 4 (UDP) and Layer 3 (IP), RFC5191 shall be used for node

authentication, DTLS for encryption and tampering prevention in Layer 4 (UDP), and IPSec, etc.

for encryption and tampering prevention in Layer 3 (IP).

(2) Using Transmission Control Protocol (TCP) in Layer 4 and Internet Protocol (IP) in Layer 3

Each ECHONET Lite node has its own IP address. The IP address range and acquisition method

are not specified. When establishing a connection, the destination port number of a TCP packet

shall always be 3610. After the establishment of a connection, no destination port number is

specified. The source port number is not specified either. A response message to a request message

shall be sent through the same connection.

For a general broadcast (simultaneous send), an ECHONET Lite frame is mapped to an IP

multicast packet by using UDP in Layer 4. The destination multicast address is 224.0.23.0 for IPv4

and ff02::1 (all-node multicast address) for IPv6. An ECHONET Lite node supporting TCP must

wait for UDP unicast and UDP multicast packets always at port number 3610 to receive and process

them.

1．3 References

The specific command contents (device types, specific codes, etc.) of JEM-1439, which specifies

the home network (especially home equipment) standard, issued in August 1988 by the Japan

Electrical Manufacturers’ Association (JEMA) were used for specific device object type and code

specifications.

“JEM 1439 Housekeeping Command Code Assignment for Use in Home Bus System”

 1-3

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

1 Overview

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Source:

The Japan Electrical Manufacturers’ Association (JEMA)

General Affairs Division

Tel: +81-3-3581-4841

 2-1

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

2 ECHONET Objects

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

Chapter 2 ECHONET Objects

2．1 Basic Concept

The ECHONET Objects specified in this section were introduced with two objectives: first,

compartmentalization of functions of devices connected to the ECHONET network; and second,

modelization of communication between devices to enable application software developers to

utilize ECHONET Lite communication whenever possible without concern for detailed

specifications. The ECHONET Objects are processed in the ECHONET Lite Communications

Processing Block. Control content exchanged in communications can be classified into those

relating to functions unique to each device and those relating to data profiling something other than

the functions unique to each device. In ECHONET Lite, all of these are specified as objects, and

control and data exchange were achieved to enable their manipulation. The ECHONET Lite

Specification stipulates two types of ECHONET Objects:

(1) Device Objects

(2) Profile Objects

Each ECHONET Object has properties. The various unique functions possessed by an ECHONET

node are represented as ECHONET Properties. Reading or writing the ECHONET Properties of the

ECHONET Object in the relevant ECHONET node operates the device.

ECHONET Objects are defined as the following specifications: object type (codes are specified in

the next section as EOJ); the properties possessed by each object (codes are specified in the next

section as EPC); and the services for those properties (codes are specified in the next section as

ESV). The following issues were taken into account when formulating the detailed specifications:

・ It was assumed that each ECHONET node would have more than one Device Object of the

same type (e.g., two Human Detection Sensor objects in the same node), and that

identification could be performed by stipulating a specific code (see detailed specifications for

EOJ in the following section).

・ ECHONET Objects defined in the ECHONET Lite Specification comply with the ECHONET

Specification. Of the properties of each object defined in "APPENDIX, Detailed Requirements

for ECHONET Device objects," however, properties using array elements service are not

specified in ECHONET Lite Specifications.

2．2 Device Objects

"Device mechanical functions" of a device are specified as a Device Object. A Device Object aims

to facilitate controls and status verifications through communications between devices. Device

Object data resides in the ECHONET Lite Communication Middleware, but the device mechanical

functions themselves reside in the Application Software Block. The ECHONET Lite

Communication Middleware manages instance property data and manages and processes operations

related to communication for properties. In these Specifications, the term "Device Object" shall be

used as a generic term for home air conditioners, refrigerators with freezers, etc. The object

definitions for each Device Object are specified (see "APPENDIX, Detailed Requirements for

 2-2

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

2 ECHONET Objects

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

 ECHONET Device objects.")

In a single ECHONET Device, one or more Device Objects is defined. Each Device Object defines

the properties to be used in each class and the services corresponding to the properties. Fig. 2.1

illustrates this relationship by specific examples.

Human Detection Sensor Class

Device objects

Instance (2)

Fault Yes/NoFault occurrence
status

Yes/NoHuman

detection status

Level 1 /…Detection

threshold level

ON/OFFOperating state

Contents of

Property

Property

Human Detection Sensor Class

Instance (1)

Fault Yes/NoFault occurrence

status

Yes/NoHuman

detection status

Level 1Detection

threshold level

ON/OFFOperating state

Contents of

Property

Property

Air Conditioner Class

Instance (1)

Fault Yes/NoFault occurrence

status

Temperature

value

Temperature

setting

Auto/cooling/hea

ting/...

Operation mode

ON/OFFOperating state

Contents of

Property

Property

Fig. 2.1 Device object example

Class definitions for the Device Objects (Air Conditioner, etc.) (i.e., property configurations and

other specific definitions and code specifications) are listed in "APPENDIX, Detailed Requirements

for ECHONET Device objects." Other ECHONET Lite nodes seeking to control the functions and

confirm the status of an ECHONET Lite node via ECHONET Lite do so by manipulating (i.e.,

reading/writing) these device objects.

When a value is written into a property, the value will be handed to the application software for

processing. Whether processing is actually performed or not is determined by the value written into

the property and the status of the application software.

With regard to Device Object property values, it must be possible to read the value currently held

by the corresponding application software according to the class definitions given in "APPENDIX,

Detailed Requirements for ECHONET Device objects" and, based on the functions of the

application software, a change shall be generated by user operation of the equipment, automatic

control through internal processing of the equipment and/or ECHONET Lite communication-based

writing operation.

2．3 Profile Objects

ECHONET Lite Node Profile data, such as ECHONET Lite node operating status, manufacturer

information, and implemented Device Objects list, are specified to enable manipulation (read/write)

by application software and other ECHONET nodes. In these specifications, the term "Profile

Objects" shall be used as a blanket term to refer to the ECHONET Lite Profile Class of Node

Profile Objects, with detailed specifications to be provided individually. Similar to the Device

Objects shown in Fig. 2.1 on the preceding section, Profile Objects define the properties to be used

in each class and the services corresponding to the content and properties thereof (see "APPENDIX,

Detailed Requirements for ECHONET Device objects"). Operations on the various profiles of an

ECHONET Lite node are performed by manipulating (reading/writing) these profile objects.

 2-3

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

2 ECHONET Objects

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

2．4 ECHONET Objects as Viewed from Application Software

Control from application software is described for the three main cases listed below, with a focus on

how the ECHONET Objects are perceived.

Case 1: Obtaining other node status

Case 2: Controlling other node functions

Case 3: Notifying other nodes of self-node status

(1) ECHONET Objects when obtaining other node status

The ECHONET Lite Specification provides two methods for obtaining the status of another node.

These methods are shown in Fig. 2.2 and Fig. 2.3. In the method shown in Fig. 2.2, when a request

is received from an application, an obtain status request is issued to objects in the specified other

node (Node B), with the results notified to the application. With this method, object data for the

other node need not be stored in the ECHONET Lite Communication Middleware for the node

(Node A in the figure) making the request. In the second method, shown in Fig. 2.3, even when no

request is received from an application, the ECHONET Lite Communication Middleware catches

and holds the notified status of objects in other nodes in advance, and then returns them to an

application when it receives a request. In this method, objects copied to ECHONET Objects in other

nodes actually exist within the ECHONET Lite Communication Middleware. In the former method

(Fig. 2.2), because the access is performed from an application, a virtual copy of the ECHONET

Objects in the other node exists in the ECHONET Lite Communication Middleware. In both cases,

in order to set the desired ECHONET Object instance via the Basic API, not only the ECHONET

Object class code but also an instance code and data specifying the node (ECHONET address, etc.)

are necessary. From the viewpoint of the application, therefore, ECHONET Objects are seen in the

relationship shown in Fig. 2.4 within the ECHONET Lite Communication Middleware.

Node BNode A

ECHONET Lite Communication
Middleware

ECHONET Lite Communication
Middleware

E_Obj

Application software

Status Read

Application software

E_Obj

Read and status

acquisition timings
synchronous

Fig. 2.2 Acquisition of other node status (1)

 2-4

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

2 ECHONET Objects

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

Node C

ECHONET Lite Communication

Middleware

ECHONET Lite Communication

Middleware

Application softwareApplication software

Read and status

acquisition timings

asynchronous

Node A

E_ObjE_Obj

Fig. 2.3 Acquisition of other node status (2)

ECHONET Lite Communication Middleware

Application software

Node B Node C

Node A

E_ObjE_Obj

E_ObjE_Obj

E_ObjE_Obj

Fig. 2.4 Objects seen from application software

(2) ECHONET Objects when controlling other node functions

ECHONET Lite provides a method for controlling the functions of other nodes, as shown in Fig.

2.5. Just as in Fig. 2.2, however, a request for control (property value setting) is issued to objects in

the specified other node (Node B), and the application is then notified of the results (although there

are exceptions to this). Basically, therefore, property data for objects in the other node (Node B)

need not be present in the ECHONET Lite Communication Middleware for the node (Node A)

making the request. From the viewpoint of the application, ECHONET Objects are seen in the

relationship shown by Node B in Fig. 2.6 within the ECHONET Lite Communication Middleware.

 2-5

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

2 ECHONET Objects

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

ECHONET Lite Communication

Middleware

ECHONET Lite Communication

Middleware

E_Obj

Application software

Control setting

request

Application software

E_Obj

Node BNode A

Fig. 2.5 Method of controlling other nodes

ECHONET Lite Communication Middleware

Application software

Node B

Node A

E_Obj

E_Obj

E_Obj

Fig. 2.6 Objects seen from application software

(3) ECHONET Objects when notifying another node of self-node status

ECHONET Lite provides two methods for notifying application software on another node of the

status of the self-node. These methods are shown in Fig. 2.7 and Fig. 2.8. In the method shown in

Fig. 2.7, when a request is received from an application, the specified other node (Node B) is

immediately notified, and the device status need not be stored as an object in the ECHONET Lite

Communication Middleware for the node (Node A) announcing the status. In the second method,

shown in Fig. 2.8, upon receiving a request from an application, the ECHONET Lite

Communication Middleware periodically sends notification of the property value to the other node

using asynchronous timing that differs from the request from the application. Here, ECHONET

Object data actually exists in the ECHONET Lite Communication Middleware. In the former

method (Fig. 2.7), however, because communication is stipulated by the application, a virtual copy

of the ECHONET Objects exists in the ECHONET Lite Communication Middleware. In either case,

from the viewpoint of the application, the ECHONET objects of the self-node are seen as existing

within the ECHONET Lite Communication Middleware (Fig. 2.9)

 2-6

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

2 ECHONET Objects

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

Node BNode A

ECHONET Lite Communication

Middleware

ECHONET Lite Communication

Middleware

E_Obj

Application software

Immediate
transmission of
status setting

to Node B

Application software

Setting and status
notification timings
synchronous

Fig. 2.7 Method of notification to other nodes (1)

Node C

ECHONET Lite Communication
Middleware

ECHONET Lite Communication
Middleware

Application software

No transmission

until status

setting

implementation

time

Application software

Setting and status

notification timings
asynchronous

Node A

E_Obj

Fig. 2.8 Method of notification to other nodes (2)

ECHONET Lite Communication Middleware

Application software

Node B

Node A

E_Obj

E_Obj

E_Obj

Fig. 2.9 Objects seen from application software

As is clear from the three cases shown above, the ECHONET Lite Communication Middleware is

viewed by the application software as containing (and in some cases actually does contain) (1) a

collection of ECHONET objects of the self-node whose role is to disclose the functions of the

 2-7

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

2 ECHONET Objects

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

 self-node to other nodes and to be controlled by other nodes; and (2) ECHONET objects at the node

level whose role is to control and obtain the status of the functions of other nodes. Here, the

"Self-device" shall be specified as the unit for a collection of ECHONET object instances showing

the functions of the self-node. Only one such device exists in each piece of ECHONET Lite

Communication Middleware, but there may be as many other devices as there are other related

nodes.

Based on the above, Fig. 2.10 shows a typical ECHONET Lite Communication Middleware object

configuration for a system in which an air conditioner, ventilation fan, and human detection sensor

are connected as separate nodes via a network, seen from the perspective of the application software

in the air conditioner.

Ventilator class

Self-device

(Object group for self-node device disclosure)

Other device 2

(Object field for other-node function control)

ECHONET Lite Communication Middleware Other device n

Other device 1

(Object field for other-node function control)

[Instance 1]

Air Conditioner Class
[Instance 1]

Fault Yes/NoFault occurrence

status

Temperature

value

Temperature setting

Auto/cooling/h

eating/...

Operation mode

ON/OFFOperating state

Contents of

Property

Property

…

Human Detection Sensor Class

Fault Yes/NoFault occurrence

Yes/NoHuman detection

status

Level 1…Detection

threshold level

ON/OFFOperating state

Contents of

Property

PropertyHuman Detection Sensor Class

Fault Yes/NoFault occurrence

status

Yes/NoHuman detection

status

Level 1…Detection

threshold level

ON/OFFOperating state

Contents of

Property

Property

[Instance 1]

[Instance 2]

Fault Yes/NoFault occurrence

status

ON/OFFOperating state

Contents of

Property

Property

…

Fig. 2.10 Example of Object Configuration

 3-1

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

3 Message Structure (Frame Format)

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

Chapter 3 Message Structure (Frame Format)

3．1 Basic Concept

To reduce the mounting load on simple devices, ECHONET Lite specifies the frame format for the

ECHONET Lite Communication Middleware Block to minimize message size while fulfilling the

requirements of the communications layer structure.

3．2 Frame Format

Fig. 3.1 shows the format of ECHONET Lite frames processed by the ECHONET Lite

Communication Middleware. Detailed specifications for each message component are provided on

the following pages.

In this Specification, messages exchanged between ECHONET Lite Communication Processing

Blocks are called ECHONET Lite frames. ECHONET Lite frames are roughly divided into two

types depending on the specified EHD (see3．2．1): the message format specified by ECHONET

Lite and the message format unique to the user. The ECHONET Lite frame length depends on the

lower-layer communication media.

 3-2

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

3 Message Structure (Frame Format)

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

Fig. 3.1 ECHONET Lite frame format

3．2．1 ECHONET Lite Header (EHD)

EHD consists of ECHONET Lite Header 1 and ECHONET Lite Header 2.

3.2.1.1 ECHONET Lite Header 1 (EHD1)

The figure below shows the detailed specifications of ECHONET Lite Header 1 (EHD1) shown in

Fig. 3.1.

EHD２ TID EDATA

ESV OPC PDC 1 ・・・ EPC n EDT nPDC nEPC 1 EDT 1DEOJSEOJ

Arbitrary formatFormat 2 (arbitrary

message format)

Format 1 (specified

message format)

SEOJ : Source ECHONET Lite object specification （3B)

DEOJ : Destination ECHONET Lite object specification(3B)

ESV : ECHONET Lite service (1B)

OPC : Number of processing properties (1B)

EPC : ECHONET Lite Property (1B)

PDC : Property data counter (1B)

EDT : Property value data (Specified by PDC)

EHD1 ECHONET Lite message header 1 (1B)

EHD2 : ECHONET Lite message header 2 (1B)

TID : Transaction ID (2B)

EDATA : ECHONET Lite data (Max.255B)

EHD１

 3-3

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

3 Message Structure (Frame Format)

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

b7

0

b6

0

b5

0

b4

1

b3

0

b2

0

b1

0

b0

0

Protocol type

1***: Conventional ECHONET

Specification

0001: Conventional ECHONET

Lite Specification

0000: Not available

Other: Reserved for future use

future reserved

Fig. 3.2 Detailed specifications of EHD1

The combination of b7 to b4 specifies an ECHONET protocol type. b7:b6:b5:b4=0:0:0:1 indicates

the ECHONET Lite Protocol defined in this Specification. b7:b6:b5:b4=0:0:0:0 shall not be used

because it enables coexistence with the conventional ECHONET Protocol.

3.2.1.2 ECHONET Lite Header 2 (EHD2)

The figure below shows the detailed specifications of ECHONET Lite Header 2 (EHD2) shown in

Fig. 3.1.

b7

1

b6

☆

b5

☆

b4

☆

b3

☆

b2

☆

b1

☆

b0

☆

0x81: Format 1

0x82: Format 2

Other: Reserved for future use

However, b7 = 1 (fixed)

Fig. 3.3 Detailed specifications of EHD2

EHD2 defines the EDATA frame format. When EHD2 is 0x81, the EDATA frame format is Format

1 (specified message format) defined in this Specification. When EHD2 is 0x82, the EDATA frame

format is Format 2 (arbitrary message format). For coexistence with the conventional ECHONET

Protocol, b7 is fixed at 1.

3．2．2 Transaction ID (TID)

TID is a parameter used to string a sent request and a received response when a request sender

receives a response in ECHONET Lite communications. A response sender shall store the same

value as that contained in the request message. The TID values of property value notifications and

other messages that do not need to receive a response are not expressly specified.

 3-4

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

3 Message Structure (Frame Format)

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

 3．2．3 ECHONET Lite Data (EDATA)

EDATA refers to the data area of a message exchanged by the ECHONET Lite Communication

Middleware.

3．2．4 ECHONET Object (EOJ)

The figure below shows the detailed specifications of ECHONET Objects in Fig. 3.1.

＃ ＃＃＃＃＃＃ ＃

b7 b6 b5 b4 b3 b2 b1 b0

X3: Instance code

X1: Class group code

☆ ☆☆☆☆☆☆ ☆

b7 b6 b5 b4 b3 b2 b1 b0

Byte 1 Byte 2

＊ ＊＊＊＊＊＊ ＊

b7 b6 b5 b4 b3 b2 b1 b0

Byte 3

X2: Class code

Fig. 3.4 Detailed specifications of EOJ code

ECHONET objects are described using the formats [X1.X2] and [X3], to be specified as shown

below. (However, "." is used only for descriptive purposes and does not mean a specific code.) The

object class is designated by the combination of X1 and X2, while X3 shows the class instance. A

single ECHONET Lite node may contain more than one instance of the same class, in which case

X3 is used to identify each one.

The specific items in Table 3.2 to Table 3.8 were specified based on JEM-1439. Detailed

specifications for the objects shown here will be developed over time, and during this phase

specifications for the objects themselves (i.e., present/not present) will be further reviewed. Objects

for which detailed specifications (including property configurations) have already been formulated

will be indicated with a “O” in the Remarks column, with the detailed specifications to be provided

in "APPENDIX, Detailed Requirements for ECHONET Device objects."

Instance code 0x00 is taken as the code for specifying all instances. This indicates that all instances

in a specified class are specified.

・ X1 ：Class group code

0x00–0xFF. For details, refer to Table 3.1.

・ X2 ：Class code

0x00-0xFF. For details, refer to Table 3.2 to Table 3.8.

・ X3 ：Instance code

0x00-0x7F. This is an identification code when the same class as that of attributes specified

by [X1．X2] exists more than once in the same node.

However, 0x00 is used as a designation of all instances of the same class.

Table 3.1 List of Class Group Codes

GROUP CODE GROUP NAME REMARKS

0x00 Sensor-related device class group

 3-5

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

3 Message Structure (Frame Format)

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

0x01 Air conditioner-related device class group

0x02 Housing/facility-related device class group

0x03 Cooking/housework-related device class group

0x04 Health-related device class group

0x05 Management/control-related device class group

0x06 AV-related device class group

0x07-0x0D Reserved for future use

0x0E Profile class group

0x0F User definition class group

0x10-0xFF Reserved for future use

Table 3.2 Class Code List (Class Group Code X1=0x00)

For details, refer to “APPENDIX, Detailed Requirements for ECHONET Device objects.”

Table 3.3 Class Code List (Class Group Code X1=0x01)

For details, refer to “APPENDIX, Detailed Requirements for ECHONET Device objects.”

Table 3.4 Class Code List (Class Group Code X1=0x02)

For details, refer to “APPENDIX, Detailed Requirements for ECHONET Device objects.”

Table 3.5 Class Code List (Class Group Code X1=0x03)

For details, refer to “APPENDIX, Detailed Requirements for ECHONET Device objects.”

Table 3.6 Class Code List (Class Group Code X1=0x04)

For details, refer to “APPENDIX, Detailed Requirements for ECHONET Device objects.”

Table 3.7 List of Class Codes for Class Group Code (X1=0x05)

CLASS CODE
CLASS NAME

DETAILED

SPECS.

REMARKS

0x00-0xFC Reserved for future use

0xFD Switch

0xFE Portable terminal

0xFF Controller

Table 3.8 List of Class Codes for Class Group Code (X1=0x0E)

CLASS CODE
CLASS NAME

DETAILED

SPECS.

REMARKS

0x00-0xEF Reserved for future use

0xF0 Node profile ●
Detailed specifications for this class are given

in Part 2, Paragraph 6.11.1.

0xF1-0xFF Reserved for future use

3．2．5 ECHONET Lite Service (ESV)

This section provides detailed specifications for the ECHONET Lite service (ESV) code shown in

Fig. 3.1.

 3-6

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

3 Message Structure (Frame Format)

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

０ １ ☆ ☆ ☆☆ ☆ ☆

b7 b6 b5 b4 b3 b2 b1 b0

Fixed

Note: Except when b7:b6=0:1, b0 to b5 have different meanings.

For details, see Tables 3.9 to 3.11.

Fig. 3.5 ESV code detailed specifications

The service provided by this code specifies an operation for properties stipulated by the EPC.

However, it does not stipulate the order of operations. The order of property operations depends on

the actual implementation.

The following three types of operations are provided. The response is subdivided into two types:

“response” and “response not possible”. The “response” is used when the service request in relation

to all the EPC-stipulated properties is accepted. The “response not possible” is used when one or

more specified properties do not exist or when the specified service cannot be processed for one or

more properties.

“Request,” “Response” (response/response not possible), and “Notification”

The “response” is a response to a “request” that requires a response. It must be returned when an

EOJ-stipulated object exists. When the service processing request related to all the EPC-stipulated

properties is accepted, the “response” must be returned. If the processing request related to one or

more specified properties cannot be accepted or if the object exists but one or more properties do

not exist, “response not possible” must be returned. When the “request” does not require any

response or when the specified object does not exist, no “response” will be returned.

There are two types of “notification”: one for transmitting own property information autonomously

and the other for sending a response to a notification request. However, these two types have the

same code.

Three specific operations are provided: write (response required/no response required), read, write

& read, and notification (notification/notification with response required). The six operations shown

below are set:

(1) Property value write (no response required)

(2) Property value write (response required)

(3) Property value read

(4) Property value write & read

(5) Property value notification

(6) Property value notification (response required)

 3-7

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

3 Message Structure (Frame Format)

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

Table 3.9 to 3.11 show specific ESV code assignments based on the content described above.

Table 3.9 List of Service Codes for Request

Service

Code

(ESV)

ECHONET Lite Service Content Symbol Remarks

0x60 Property value write request (no response

required)

SetI Broadcast possible

0x61 Property value write request (response

required)

SetC

0x62 Property value read request Get Broadcast possible

0x63 Property value notification request INF_REQ Broadcast possible

0x64-0x

6D

Reserved for future use

0x6E Property value write & read request SetGet Broadcast possible

0x6F Reserved for future use

Table 3.10 List of ESV Codes for Response/Notification

Service

Code

(ESV)

ECHONET Lite Service Content Symbol Remarks

0x71 Property value Property value write

response

Set_Res ESV=0x61 response; Individual

response

0x72 Property value read response Get_Res ESV=0x62 response; Individual

response

0x73 Property value notification INF *1 : Both individual notification

and broadcast notification

0x74 Property value notification (response

required)

INFC Individual notification

0x75-0x79 Reserved for future use

0x7A Property value notification response INFC_Res ESV=0x74 response; Individual

response

0x7B-0x7

D

Reserved for future use

0x7E Property value write & read response SetGet_Re

s

ESV=0x6E response; Individual

response

0x7F Reserved for future use

Note: *1 Used for autonomous property value notification and for 0x63 response.

Table 3.11 List of ESV Codes for "Response Not Possible"

Service

Code

(ESV)

ECHONET Lite Service Content Symbol Remarks

0x50 Property value write request "response not

possible"

SetI_SNA ESV=0x60 response not

possible; Individual response

0x51 Property value write request "response not SetC_SNA ESV=0x61 response not

 3-8

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

3 Message Structure (Frame Format)

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

 possible" possible; Individual response

0x52 Property value read "response not possible" Get_SNA ESV=0x62 response not

possible; Individual response

0x53 Property value notification "response not

possible"

INF_SNA ESV=0x63 response not

possible; Individual response

0x54-0x5

D

Reserved for future use

0x5E Property value write & read "response not

possible"

SetGet_S

NA

ESV=0x6E response not

possible; Individual response

0x5F Reserved for future use

3．2．6 Processing Target Property Counters (OPC, OPCSet, and OPCGet)

A target property counter consists of 1 byte. If the ESV service is for writing, reading, or notifying

property values, the number of properties to be written, read, or notified is held, respectively. For

the write or read service by ESV, the number of properties to be written is held in OPCSet and that

of properties to be read is held in OPCGet.

The minimum value of a processing target counter is 1 and its maximum value is limited by the

message length by lower communication media in transmission and reception. The value of the

processing target counter can be 0 only in the condition of SetGet_SNA. A node discards a received

ECHONET Lite frame if the value of the processing target property counter is different from the

number of subsequent requests or responses.

If, for instance, there are three requests as shown in Fig. 3.6, the processing target property counter

is 0x03.

0x030x62

SEOJ DEOJ ESV OPC
EPC

1

Request 1

EDT

1

PDC

1

EPC

2

Request 2

EDT

2

PDC

2

EPC

3

Request 3

EDT

3

PDC

3

Fig. 3.6 Processing Target Property Counter for Three Requests

3．2．7 ECHONET Property (EPC)

This section provides detailed specifications for the ECHONET property (EPC) code shown in Fig.

3.1. The EPC specifies a service target function. Each object stipulated by X1 (class group code)

and X2 (class code), described in the previous section, is specified here. (When a specified object

changes, the target function also changes even when the code remains unchanged. However, the

detailed specifications are designed to ensure that, whenever possible, the same functions will have

the same code.) Specific code values for each object are stipulated in “APPENDIX, Detailed

Requirements for ECHONET Device objects.” These codes correspond to the object property

identifiers in the object definitions. However, an ECHONET Lite node will not support the array

element EPC specified in “APPENDIX, Detailed Requirements for ECHONET Device objects.”

 3-9

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

3 Message Structure (Frame Format)

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

 The ESV and message configuration and their relationship to EPC and ESV are described here. The

EPC of an ECHONET Lite message is such that the ESV value determines whether the target object

is stipulated by the SEOJ or DEOJ. When the ESV is a “response” or “notification”, it is concluded

that the EPC forms a SEOJ-stipulated object and that the “response” or “notification” is addressed

to a DEOJ-stipulated object. On the other hand, when the ESV is a “request”, it is concluded that

the EPC forms a DEOJ and that the “request” is issued from an SEOJ-stipulated object.

Fig. 3.7 EPC Detailed Specifications

Table 3.12 EPC Code Allocation Table

 8 9 A B C D E F

0

1

2

3

4

5

6
7

8

9
A

B

C
D

E

F

Notes: 1) Stipulated for each user. In the case of a user-defined object class, 0xA to 0xF in the four high-order bits

(b7 to b4) are user-defined.

2) These two regions are used in principle, but in practice the boundary line will change for each class

group. Individual regions will be specified in the object class detailed specifications in Chapter 6 and

"APPENDIX, Detailed Requirements for ECHONET Device objects."

 Users may use the areas of 0xF0 to 0xFF in their own ways.

１ ☆ ☆ ☆ ☆ ☆ ☆ ☆
b7 b6 b5 b4 b3 b2 b1 b0

Stipulated for four regions: shared by all object classes;
shared by each class group; unique to each class;
and user-defined. (Reference)

Fixed

Note: When b7 = 0, the other bits will be defined differently.

1

↑
b3–b0 values
 (hex)

Region shared

by all object

classes

User-

define

d
*1

←b7–b4 values
 (hex)

Region shared

by each class

group
*2

Region unique to

each class
*2

 3-10

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

3 Message Structure (Frame Format)

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

 3．2．8 Property Data Counter (PDC)

The property data counter retains the number of bytes in ECHONET Property Value Data (EDT). If,

for instance, the ECHONET Property Value Data sizes for Requests 1, 2, and 3 are 2 bytes, 1 byte,

and 5 bytes, respectively, the values placed in the first, second, and third property data counters are

0x02, 0x01, and 0x05, respectively, as shown in Fig. 3.8. In the case of read-requests, the value of

PDC is 0x00.

0x62

SEOJ DEOJ ESV OPC
EPC

1

Request 1

EDT

1

PDC

1

EPC

2

Request 2

EDT

2

PDC

2

EPC

3

Request 3

EDT

3

PDC

3

2byte 1byte 5byte0ｘ02 0ｘ01 0ｘ05

Fig. 3.8 Property Data Counter

3．2．9 ECHONET Property Value Data (EDT)

This section presents detailed code specifications for the ECHONET property value data (EDT)

range shown in Fig. 3.1. EDT consists of data for the relevant ECHONET property (EPC), such as

status notification or specific setting and control by an ECHONET Lite service (ESV). Detailed

specifications are provided for the size, code value, etc. of the EDT for each EPC (see “APPENDIX,

Detailed Requirements for ECHONET Device objects”).

 4-1

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

Chapter 4 Basic Sequences

4．1 Concept

Of the sequences exchanged between the ECHONET Lite Communication Middleware for nodes

connected to the ECHONET Lite network, those that must be implemented are called “basic

sequences.” This chapter divides these basic sequences into two main categories for specification:

(1) Basic sequences for object control

(2) Basic sequences for node startup

Depending on the type of device, some of the basic sequences specified in this chapter, all of which

are required, involve complex exchanges and thus entail much heavier communications processing

than application processing. Therefore, the specifications were formulated to make the sequences as

simple as possible.

The ECHONET Lite Communications Processing Block's internal processing sequence that is

performed at node startup is described in Section 5.4 “Startup Processing”.

4．2 Basic Sequences for Object Control

ECHONET Lite Communication Middleware exchanges are performed by stipulating the service

(ESV: ECHONET Lite service) with respect to the object property specified in the previous section.

Basic sequences for objects can be broadly divided into basic sequences for object control in

general and basic sequences for service content (see below). These two types and detailed

sequences concerning service content are described below.

(1) Basic sequences for service content

(2) Basic sequences for object control in general

(3) Detailed sequences concerning service content

4．2．1 Basic Sequences for Service Content

The ECHONET Lite Communication Middleware has five basic processing sequences for receiving

object property-related services (specified in the table), assuming the stipulated property exists and

has service functions:

(A) Basic sequence for receiving a request (no response required)

(B) Basic sequence for receiving a request (response required)

(C) Basic sequence for processing a notification request

(D) Basic sequence for autonomous notification

(E) Basic sequence for processing a request requiring a notification response

(A) Basic sequence for receiving a request (no response required)

 4-2

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

 There are some operations (ESV = 0x60-0x6E) that an ECHONET Lite node performs in relation to

properties. The figure below shows the ECHONET Lite node's basic sequence that is performed

upon receipt of ESV = 0x60:

ECHONET Lite node

Request message with ESV = 0x60

Property value control

(write) request received

～

～

Individual or broadcast request

Fig. 4.1 Basic Sequence for Receiving a Request for ESV = 0x60

(B) Basic sequence for receiving a request (response required)

The figure below shows the basic sequence, for each ESV, for an ECHONET Lite node that has

received a property value-related manipulation from another ECHONET Lite node (ESV = 0x60-

0x6E), where ESV = 0x61, 0x62 or 0x6E.

ECHONET Lite node

Request message with ESV = 0x6*

Property value control (write
or read) request received

～

～

Response message with ESV = 0x7*

Individual response

Individual or broadcast request

Fig. 4.2 Basic Sequence for Receiving Request for ESV = 0x6* (*: 1, 2 and E)

 (C) Basic sequence for processing a notification request

The figure below shows a basic sequence that an ECHONET Lite node performs when ESV＝0x63,

among operations (ESV = 0x60-0x6E) concerning property values, was received from another

ECHONET Lite node.

 4-3

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

ECHONET Lite node

Request message with ESV = 0x63

Property value notification
request received

～

～

Response message with ESV = 0x73

broadcast response

Individual or broadcast request

Fig. 4.3 Basic Sequence for Processing a Notification Request for ESV = 0x63

(D) Basic sequence for autonomous notification

The figure below shows a basic sequence for an autonomous notification concerning property

values from the self ECHONET Lite node. For all properties, a notification message may be sent at

any time based on this sequence.

Regarding a property whose status change requires notification, however, a change in the value of

the property of an object must be notified by a general broadcast.

ECHONET Lite node

Notification message with ESV = 0x73

Property value
notification

～

Individual or broadcast notification

Fig. 4.4 Basic sequence for property value notification

(E) Basic sequence for processing a request requiring a notification response

The figure below shows the basic sequence for an ECHONET Lite node when a request requiring a

notification response (ESV = 0x74) concerning property values was received from another

ECHONET Lite node.

 4-4

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

ECHONET Lite node

Notification message with ESV = 0x74

Property value
notification received

～

～

Response message with ESV = 0x7A

Individual response

Individual request

Fig. 4.5 Basic Sequence for Processing a Request Requiring a Notification Response (ESV =
0x74)

4．2．2 Basic Sequences for Object Control in General

The ECHONET Lite Communication Middleware performs the following six processes as basic

processing when it receives a service (specified in Table 3.9 to Table 3.11) for an object property.

The first five processes are described here. The sixth process (F) is described in the previous section

under Basic Sequences for Service Content.

(A) Processing when the controlled object does not exist

(B) Processing when the controlled object exists, except when ESV = 0x60 to 0x63, 0x6E and

0x74

(C) Processing when the controlled object exists but the controlled property does not exist or

can be processed only partially

(D) Processing when the controlled property exists but the stipulated service processing

functions are not available

(E) Processing when the controlled property exists and the stipulated service processing

functions are available but the EDT size does not match

(F) Processing when the controlled property exists, the stipulated service processing functions

are available and also the EDT size matches

(A) Processing when the controlled object does not exist

The received ECHONET Lite message is discarded and no response is returned in the following

cases:

(1)The DEOJ code specified in the received ECHONET Lite message does not match the

EOJ code of the ECHONET object mounted on the self ECHONET Lite node.

(2)The instance code of the DEOJ code of the received ECHONET Lite message is 0x00

and does not match the combination of the EOJ class group code and class code of the

ECHONET object mounted on the ECHONET Lite node.

 4-5

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

ECHONET Lite node

Message

Discard received
message

(return no response)

～

～

Individual or broadcast request

Fig. 4.6 Basic Sequence When Controlled Object Does Not Exist

(B) Processing when the controlled object exists, except when ESV = 0x60-0x63, 0x6E and 0x74

Processing similar to (A) above.

(C) Processing when the controlled property exists but the controlled property doesn’t exist or can

be processed only partially

A response of processing impossible (ESV = 0x50-0x53, 0x5E) corresponding to the

received ECHONET Lite message (ESV = 0x60-0x63, 0x6E) is returned in the following

cases:

(1) The EPC specified in the ECHONET Lite message does not match that of the object

mounted on the self ECHONET Lite node.

ECHONET Lite node

Request message with ESV = 0x6#

Processing impossible of the
received message (“response

not possible” must be returned)

～

～

Response message with ESV = 0x5#

Individual or broadcast request

Individual response

 4-6

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

EDATA configuration for “response not possible”

EDATA configuration for “request”

0x5#

SEOJ ESV OPCDEOJ

n

EPC

1

Request 1

EDT

1

PDC

1

EPC

m

Request m

EDT

m

PDC

m

EPC

n

Request n

EDT

n

PDC

n
TIGOPCTID

0x6#

SEOJ ESV OPCDEOJ

n

EPC

1

Request 1

EDT

1

PDC

1

EPC

m

Request m

EDT

m

PDC

m

EPC

n

Request n

EDT

n

PDC

n
TIGOPC

Processing not possible

TID

Fig. 4.7 Basic Sequence Processing performed when the object to be controlled exists but

not properties to be controlled or the properties to be controlled can be processed only
partially

(D) Processing when the controlled property exists but the stipulated service (ESV=0x60-0x63,

0x6E) processing functions are not available

Processing similar to (C) above

(E) Processing when the controlled property exists and the stipulated service (ESV=0x60, 0x61,

0x6E) processing functions are available but the EDT size does not match

Processing similar to (A) or (C) above.

4．2．3 Detailed sequences concerning service content

In diagrams 4.2.3.1 to 4.2.3.6, the EOJ values used in relation to “requests” are individually

specified codes. However, although a service request is made to two or more nonspecific object

instances using a single message when the EOJ value indicates all instances of the specified class

(i.e. X3 =0x00), the processing in such a case shall assume that a request message was sent

individually to each instance. That is, when it is necessary to send response messages, they shall be

generated in such a manner that the number of instances equals the number of response messages,

and messages with contents that match the individual instances shall be sent after storing such

contents.

4.2.3.1 Property value write service (no response required) [0x60, 0x50]

In the case of a “request” (0x60), this indicates a request to write the content shown in the EDT to

the property stipulated in the EPC of the DEOJ-stipulated object. When more than one property is

stipulated, the writing sequence is not specified.

When the request is not accepted, or when the stipulated DEOJ exists but the stipulated EPC does

not exist, “response not possible” (0x50) is returned. When the specified DEOJ exists but there are

 4-7

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

 too many target properties of control requests to process them all, the number of properties

processed from the beginning is stored in OPC and "response not possible" (0x50) is returned as a

response. Then the destination address of the lower communication layer shall be the source of

"request" (the source address of the "request" message in the lower communication layer).

When the relevant object itself does not exist, neither “response” nor “response not possible” is

returned.

Fig. 4.8 EDATA configuration for property value write service (no response required)

4.2.3.2 Property value write service (response required)
[0x61,0x71,0x51]

In the case of “request” (0x61), this indicates a request to write the content shown in the EDT to the

property stipulated in the EPC of the DEOJ-stipulated object. When more than one property is

stipulated, the writing sequence is not specified.

In response to this “request,” when the request is to be (or has already been) accepted, a “response”

(0x71) is returned. However, this “response” is not a processing implementation response but an

acceptance response. In the frame format for response, the value of the object stipulated by the

request is set in the SEOJ, and the same value as for the request is set in the OPC. In the EPC, the

same property code for the request is set. To indicate that the request was accepted, the PDC is set

to 0 and no EDT is attached.

When the request is not accepted, or when the stipulated DEOJ exists but the stipulated EPC does

not exist, “response not possible” (0x51) is returned. In the same way as for a message of

"response," the request-stipulated object value is set in the SEOJ, the request-source object value in

the DEOJ, the same value as for the request in the OPC, and the same property code for the request

in the EPC for a message of "response not possible." For the EPC that accepted the request, 0 is set

in the succeeding PDC and no EDT is attached. For the EPC that did not accept the request, the

same value as for the request is set in the succeeding PDC and the requested EDT is attached to

indicate that the request could not be accepted.

　 EDATA configuration for "request"

EDATA configuration for "response not possible"

(When the request is accepted, or when the stipulated DEOJ exist s but the stipulated EPC does not exist)

0 x50

0 x60

S EOJ ESV OPCD EOJ

n

EPC

1

Request 1

EDT

1

PDC

1

EPC

m

Request m

EDT

m

PDC

m

EPC

n

Request n

EDT

n

PDC

n

S EOJ ESV OPCD EOJ

n

EPC

1

Response 1

PDC

1

EPC

m

Response m

EDT

m

PDC

m

EPC

n

Response n

PDC

n

　Processing possible
Processing not
possible 　Processing possible

0 x50

　Processing possible Processing not possible

EDATA configuration for "response not possible"

(When the specified DEOJ exists but there are too many target properties of control request to process all)

SEOJ ESV OPCDEOJ

m

EPC

1

Response 1

PDC

1

EPC

m

Response m

EDT

m

PDC

m

　 EDATA configuration for "request"

EDATA configuration for "response not possible"

(When the request is accepted, or when the stipulated DEOJ exist s but the stipulated EPC does not exist)

0 x50

0 x60

S EOJ ESV OPCD EOJ

n

EPC

1

Request 1Request 1

EDT

1

PDC

1

EPC

m

Request m

EDT

m

PDC

m

EPC

n

Request nRequest n

EDT

n

PDC

n

S EOJ ESV OPCD EOJ

n

EPC

1

Response 1

PDC

1

EPC

m

Response mResponse m

EDT

m

PDC

m

EPC

n

Response n

PDC

n

　Processing possible
Processing not
possible 　Processing possible

0 x50

　Processing possible Processing not possible

EDATA configuration for "response not possible"

(When the specified DEOJ exists but there are too many target properties of control request to process all)

SEOJ ESV OPCDEOJ

m

EPC

1

Response 1

PDC

1

EPC

m

Response m

EDT

m

PDC

m
SEOJ ESV OPCDEOJ

m

EPC

1

Response 1

PDC

1

EPC

m

Response mResponse m

EDT

m

PDC

m

0x50

 4-8

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

When the stipulated DEOJ exists but there are too many target properties of control requests to

process them all, the number of properties processed from the beginning (following a judgment on

whether the request is accepted or not) is set in the OPC and “response not possible” (0x51) is

returned as a response. The value settings for PDC and EDT shall be the same as in normal cases of

response not possible. In this case, the responding side can determine the number of property

values to be returned; however, the sequence of such properties must be the same as in the request

message.

When the relevant object itself does not exist, neither “response” nor “response not possible” is

returned. Whether a response is possible or not, the destination address of the lower communication

layer shall be the source of "request" (the source address of the "request" message in the lower

communication layer).

EDATA configuration for "request"

EDATA configuration for "response"

EDATA configuration for "response not possible"

0x51

0x61

SEOJ ESV OPCDEOJ

n

EPC

1

Response 1

PDC

1

0x71

EPC

m

Response m

PDC

m

EPC

n

Response n

PDC

n

SEOJ ESV OPCDEOJ

n

EPC

1

Request1

EDT

1

PDC

1

EPC

m

Request m

EDT

m

PDC

m

EPC

n

Request n

EDT

n

PDC

n

SEOJ ESV OPCDEOJ

n

EPC

1

Response 1

PDC

1

EPC

m

Response m

EDT

m

PDC

m

EPC

n

Response n

PDC

n

Processing
possible

Processing
possible

Processing
possible

Processing
possible

Processing
possible

Processing not
possible

Fig. 4.9 EDATA configuration for property value write service (response required)

4.2.3.3 Property value read service [0x62,0x72,0x52]

In the case of “read” (0x62), this indicates a request to read EPC-stipulated properties from the

DEOJ-stipulated object. When more than one property is stipulated, the reading sequence is not

specified. For messages in the case of a request, the PDC is set to 0.

When the request is to be (or has already been) accepted for all properties, a “response” (0x72) is

returned. In the frame format for response, the value of the object stipulated by the request is set in

the SEOJ, and the value of the request-source object in the DEOJ. In the OPC, the same value as for

the request is set. To indicate that the request was accepted, the length of the read property is set in

the PDC and the read property value in the EDT.

When the request is not accepted, or when the stipulated DEOJ exists but the stipulated EPC does

not exist, “response not possible” (0x52) is returned. In the same way as for a message of

"response," the request-stipulated object value is set in the SEOJ, the request-source object value in

the DEOJ, the same value as for the request in the OPC, and the same property code for the request

in the EPC for a message of "response not possible." For the EPC that accepted the request, the

length of the read property is set in the succeeding PDC and the read property value in the EDT. For

the EPC that did not accept the request, 0 is set in the succeeding PDC and no EDT is attached to

indicate that the request was not accepted.

 4-9

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

When the stipulated DEOJ exists but there are too many properties subject to control requests to

process them all, or when not all of the read-requested property values can be returned because they

exceed the allowable message length, the number of properties processed from the beginning

(following a judgment on whether the request is accepted or not) is stored in the OPC and “response

not possible” (0x52) is returned as a response. The value settings for PDC and EDT shall be the

same as in normal cases of response not possible. In this case, the responding side can determine the

number of property values to be returned; however, the sequence of such properties must be the

same as in the request message.

When the relevant object itself does not exist, neither “response” nor “response not possible” is

returned. Whether a response is possible or not, the destination address of the lower communication

layer shall be the source of "request" (the source address of the "request" message in the lower

communication layer).

6

EDATA configuration for "request"

EDATA configuration for "response"

EDATA configuration for "response not possible"

0x52

0x62

n0x72

n

n

EPC

1

PDC

1

EPC

m

Response m

PDC

m

Processing possible Processing possible
Processing not

possible

Processing possible Processing possible Processing possible

SEOJ DEOJ ESV OPC

SEOJ DEOJ ESV OPC

SEOJ DEOJ ESV OPC

Get時のメッセージフォーマット

EPC

1

Response 1

EDT

1

PDC

1

EPC

m

Response m

EDT

m

PDC

m

EPC

n

Response n

EDT

n

PDC

n

EPC

1

Request 1

PDC

1

EPC

m

Request m

PDC

m

EPC

n

Request n

PDC

n

Response 1

EDT

1

EPC

n

Response n

EDT

n

PDC

n

Fig. 4.10 EDATA configuration for property value read service

4.2.3.4 Property value write & read service [0x6E,0x7E,0x5E]

"Write & read" (0x6E) indicates a service to process two requests by a single message: a request for

writing EDT-stipulated contents into EPC-stipulated properties of a DEOJ-stipulated object and a

request for the contents of EPC-stipulated properties from a DEOJ-stipulated object. The number of

write-requested properties is stored in OPCSet and that of read-requested properties is set in

OPCGet. The PDC corresponding to a read-requested EPC is set to 0. The sequence of processing

write-requests and read-requests is not specified. That is, whether the value before or after the

completion of write-request processing is stored as a response to a property stipulated in a

read-request depends on the actual implementation. Similarly, if more than one property is

stipulated in both write-request and read-request, the sequence of processing for each property is

not specified.

When the request is to be (or has already been) accepted, a “response” (0x7E) is returned. In the

frame format for response, the value of the object stipulated by the request is set in the SEOJ and

the request-source object value in the DEOJ. The same value as for the request is set in OPCSet,

and the same property code for the request is set in the EPCs set. The PDC is set to 0 and no EDT is

 4-10

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

 attached. The OPCGet for the request is set in OPCGet, the same property code for the request in

the EPC, the length of the read property in the PDC, and the read property value in the EDT.

When the request is not accepted, or when the stipulated DEOJ exists but the stipulated EPC does

not exist, “response not possible” (0x5E) is returned. When the specified DEOJ exists but there are

too many target properties of control requests to process them all, or all the property values

requested for write or read cannot be returned because the allowable message length is too short, the

number of properties processed from the beginning is stored in OPCSet and OPCGet. Then

"response not possible" (0x5E) is returned as a response. In this case, the responding side can

determine the number of property values to be returned; however, the sequence of such properties

must be the same as in the request message.

When the relevant object itself does not exist, neither “response” nor “response not possible” is

returned. Whether a response is possible or not, the destination address of the lower communication

layer shall be the source of "request" (the source address of the "request" message in the lower

communication layer).

EDATA configuration for "request"

EDATA configuration for "response"

EDATA configuration for "response not possible"

0x5E

0x6E

m

EPC
1

Request 1

PDC
1

0x7E

EPC
m+1

Request m+1

PDC
M+1

EPC
n

Request n

PDC
n

m

EPC
1

Response 1

PDC
1

EPC
m+1

Response m+1

EDT
m+1

PDC
m+1

EPC
n

Response n

EDT
n

PDC
n

SEOJ

m

EPC
1

Response 1

PDC
1

EPC
m+1

Response m+1

PDC
m+1

EPC
n

Response n

PDC
n

Processing possible

EDT
n

EDT
1

EPC
m

Request m

EDT
m

PDC
m

EPC
ｍ

Response m

PDC
ｍ

EPC
m

Response m

EDT
m

PDC
m

Processing

not possible

OPC
Get

n-m

OPC
Get

n-m

DEOJ ESV
OPC
Set

SEOJ DEOJ ESV
OPC
Set

SEOJ DEOJ ESV
OPC
Set

OPC
Get

n-m

Processing possible
Processing possible

Processing possible

Processing possible Processing possible
Processing

not possible

Fig. 4.11 EDATA configuration for property value write & read service

This service is an option. If a node not supporting this option receives a request for the service, the

message will be discarded if the stipulated DEOJ is not incorporated. If the stipulated DEOJ is

incorporated, 0 will be stored in OPCSet and 0 in OPCGet, and “response not possible” (0x5E) will

be returned as a response.

4.2.3.5 Property value notification service [0x63,0x73,0x53]

There are two types of “notification”: the notification sent as a response to a “notify request” (0x63)

and the autonomous notification, which is unrelated to notify requests. The codes for these two

types are identical. (Here, notification in response to a “notify request” signifies an announcement

that does not specify the property value [content], while an autonomous notification is a voluntary

announcement that was not made in response to a request.) In the case of a “notify request” (0x63),

this indicates a request to notify (by broadcast simultaneously; hereafter “announce” will signify a

broadcast) the content of the property stipulated in the EPC of the DEOJ-stipulated object. For

 4-11

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

 messages in the case of a request, the PDC is set to 0. When more than one property is stipulated,

the notification sequence is not specified.

In response to this “notify request,” when the request is to be accepted, a “response” (0x73) value is

notified by broadcast transmission. The request-stipulated object value is set in the SEOJ, the

request-source object value in the DEOJ, and the same value as for the request in the OPC. The

same property code as for the request is set in the EPC and the property length of notification is set

in the PDC. In the EDT, the requested property value (contents of notification) is stored. For

broadcast, destination addresses in lower communication layers are set.

When the request is not accepted, or when the stipulated DEOJ exists but the stipulated EPC does

not exist, “response not possible” (0x53) is returned to the request source by individual transmission.

In the same way as for a message of "response," the request-stipulated object value is set in the

SEOJ, the request-source object value in the DEOJ, the same value as for the request in the OPC,

and the same property code for the request in the EPC for a message of "response not possible." For

the EPC that accepted the request, the length of the read property is set in the succeeding PDC and

the read property value in the EDT. For the EPC that did not accept the request, 0 is set in the

succeeding PDC and no EDT is attached to indicate that the request was not accepted. When the

specified DEOJ exists but there are too many target properties of control request to process them all,

or the property value (contents of notification) requested for read cannot be returned because the

allowable message length is too short, the number of properties processed from the beginning is

stored in the OPC, the same property code for the request in the EPC, the length of the read

property in the PDC, and the read property value in the EDT. Then "response not possible" (0x53) is

returned as a response. In this case, the responding side can determine the number of property

values to be returned. Also for a response not possible, the address of the lower communication

layer of the request source shall be set as the destination address of the lower communication layer.

When the relevant object itself does not exist, neither “response” nor “response not possible” is

returned. In the case of an autonomous “notification”, the DEA is set to a broadcast for a required

status change notification. In other cases, however, the destination of the lower communication

layer can be set arbitrarily for broadcast or individual transmission.

For an autonomous "notification," a node profile class is stored if there is no DEOJ, explicitly

specified EOJ in particular.

 4-12

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

9

⑤通知（応答不要）時の電文構成

EDATA configuration for "request"

EDATA configuration for "response“

EDATA configuration for autonomous "notification"

EDATA configuration for "response not possible"

0x53

0x63

n0x73

n

Processing

not possible

SEOJ DEOJ ESV OPC

SEOJ DEOJ ESV OPC

• 通知要求による通知も記載
• 通知要求に対する通知と自発的な通知をする場合のメッセージフォーマットは等しい

EPC

1

Request 1

PDC

1

EPC

m

Request m

PDC

m

EPC

n

Request n

PDC

n

Processing possible

EPC

1

Response 1

EDT

1

PDC

1

EPC

m

Response m

EDT

m

PDC

m

EPC

n

Response n

EDT

n

PDC

n

n

EPC

1

PDC

1

EPC

m

Response m

PDC

mSEOJ DEOJ ESV OPC

Response 1

EDT

1

EPC

n

Response n

EDT

n

PDC

n

Notification 1 Notification m Notification n

Processing possible Processing possible

Processing possible Processing possible

Fig. 4.12 EDATA configuration for property value notification service

4.2.3.6 Property value notification service (response required) [0x74,
0x7A]

The “notification (response required)” (0x74) autonomously notifies a specific node of the property

value stipulated by the EPC of the SEOJ-stipulated object and requests a response. When more than

one property is stipulated, the notification sequence is not specified.

When the specified DEOJ exists, a “response” (0x7A) for autonomous notification reception is

returned. In a response message, the requested object value is set in the SEOJ and the

request-source object value in the DEOJ. The same value as for notification is set in the OPC and

the same property code as for notification is set in the EPC. To indicate that the notification was

received, the PDC is set to 0 and no EDT is attached.

When the specified DEOJ does not exist, the message shall be discarded.

Fig. 4.13 EDATA configuration for property value notification (response required) service

10

⑥通知（応答要）時の電文構成

EDATA configuration for "notify response"

「EDATA configuration for "notification (response required)"

0x7A

m0x74

m

SEOJ DEOJ ESV OPC

SEOJ DEOJ ESV OPC

EPC

1

Response 1

PDC

1

EPC

m

Response m

PDC

m

EPC

n

Response n

PDC

n

Processing possible

EPC

1

Notification 1

EDT

1

PDC

1

EPC

m

Notification m

EDT

m

PDC

m

EPC

n

Notification n

EDT

n

PDC

n

Processing possible
Processing possible

 4-13

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

4 Basic Sequences

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

 4．3 Basic Sequence for ECHONET Lite Node Startup

For the ECHONET Lite nodes described in this section, startup begins with the acquisition of a

communication address for self-recognition and specification. This section specifies the startup

sequences, assuming that the communication address has already been obtained when the

ECHONET Lite Communication Middleware begins operation.

4．3．1 Basic Sequence for ECHONET Lite Node Startup

The figure below shows the basic sequence that an ECHONET Lite node performs at startup.

This processing is also executed when a communication address is changed. It is preferable to send

an instance list notification not with another EPC but with OPC set to 1 because some nodes can

receive the notification only when OPC is1.

Message (1) ・Stipulates node profile objects (0x0EF001) with SEOJ. In a transmission-only node case,

however, 0x0EF002 is stipulated.
・Stipulates node profile objects (0x0EF001) with DEOJ
・Stipulates instance list notification properties (0xD5) by EPC.
・Stipulates notification (0x73) by ESV.
・Stipulates OPC=1 as a rule.
・Stipulates instance list information in EDT=self node.

Fig. 4.14 Basic Sequence for ECHONET Lite Node Startup

New startup
ECHONET Lite node

Message (1): Instance list notification

When the number of instances to be notified by an
instance list notification exceeds the maximum
value, see (6) in “Node Profile Class: Detailed
Specifications.”

Internal initial processing/
Communication address

setting completion

(Broadcast)

 5-1

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

5 ECHONET Lite Communications Processing Block Processing

Specifications

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

Chapter 5 ECHONET Lite Communications Processing Block
Processing Specifications

5．1 Basic Concept

This section presents the specifications for ECHONET Lite communications processing in the

ECHONET Lite Communication Middleware as shown in the figure below. Note that the processes

shown in the figure are used simply to describe basic processing in the ECHONET Lite

Communications Processing Block and are not intended as specifications for actual software

structure.

(1) Object processing
(2) Send message assembly and management processing
(3) Startup processing

Fig. 5.1 Overview of Communication Middleware Processing (Layer Configuration)

5．2 Object Processing Specifications

In the ECHONET Lite Communications Processing Block, device functions are expressed as

objects, and through these objects operations are performed between nodes. See Chapter 2 and

“APPENDIX, Detailed Requirements for ECHONET Device objects.” for detailed information on

objects. This section gives the object processing specifications below.

Profile objects

Device objects

Lower communication
layers

Ex.
EMS application

Ex.
Refrigerator application

Ex.
A/C application

Application

Object processing

ECHONET Lite
Communication Processing
Block

Startup
processing

Send message
creation and
management

Send message creation and

management

 5-2

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

5 ECHONET Lite Communications Processing Block Processing

Specifications

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

 Processing using operation data from application software can be divided into two main categories:

current device object
1
 processing and other device object

2
 processing. Object processing (1) uses

data for all objects. When setting or control (read/write) data is received from application software,

the block first determines which type of object the data concerns and then performs the appropriate

processing. Processing specifications for the two categories are described below.

Notes: *1. Objects corresponding to functions that are actually present on the self-node. Includes

communications definition objects, profile objects, and device objects. Can be referenced and
controlled from other nodes.

 *2. Objects corresponding to functions not present in the self-node which designed to control the
status of other nodes. Includes communications definition objects, profile objects, and device
objects.

(1) Current device object processing specifications

When the data (reference/control content) is received from application software and the

stipulated object and property exist, processing is performed in accordance with the request

stipulated in application software processing.

(2) Other device object processing specifications

The data (reference/control content) is received from application software, the stipulated object

and property data and the destination address data are handed off to send message

creation/management processing, and processing is terminated.

When content received from the application software is stipulated for initial processing, processing

is handed off to startup processing.

5．3 Send Message Creation/Management Processing

When the data necessary to create an ECHONET Lite message is received from startup processing

or object processing, the data required for an ECHONET Lite message, such as ECHONET Lite

header (EHD), is added to create the message and send it through the lower communication

interface.

5．4 Startup Processing

When communication address setting is completed, the startup sequence processing specified in

Chapter 4 is performed, and the message data to be transmitted is handed off to send message

creation/management processing. The system then waits for the required data to be written to the

object in line with the sequence and, if necessary, performs time-out management and sends the

next message to complete startup processing.

When startup processing is completed, the object property value indicating the status of the

Communications Middleware is set, and processing is terminated.

 6-1

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

6 ECHONET Objects: Detailed Specifications

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Chapter 6 ECHONET Objects: Detailed Specifications

6．1 Basic Concept

This section specifies specific values for the class codes of ECHONET objects processed in the

ECHONET Lite Communication Middleware, whose types and overview were given in Chapter 2,

along with property configurations and their detailed specifications. ECHONET objects described

in this chapter and in “APPENDIX, Detailed Requirements for ECHONET Device objects” are

divided into two main classes: device objects and profile objects. In terms of the code structure,

they are divided into the class groups shown below. After presenting the shared ECHONET

property specifications and object super classes that form ECHONET objects, this chapter will

provide guidelines for each class group (except for the service group) and details for each class.

(1) Device objects

・ Sensor-related device class group

・ Air conditioning-related device class group

・ Housing-related device class group

・ Cooking/housework-related device class group

・ Health-related device class group

・ Management and control-related device class group

・ AV-related device class group

(2) Profile objects

・ Profile class group

Detailed specifications for each device object class are provided in “APPENDIX, Detailed

Requirements for ECHONET Device objects."

Each ECHONET Lite node must implement a device object and a node profile class.

6．2 ECHONET Properties: Basic Specifications

This section discusses the specifications shared by all ECHONET object classes, the details of

which are provided in this section and in “APPENDIX, Detailed Requirements for ECHONET

Device objects.”

6．2．1 ECHONET Property Value Data Types

The ECHONET property value is expressed as an unsigned integer when the value is a

non-negative integer value; it is expressed as a signed integer when the value is an integer value

containing negatives.

When the value is a small value, it is handled as a fixed point type; when it is a non-negative small

value, it is treated as an unsigned integer; and when it is a small value containing negatives, it is

 6-2

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

6 ECHONET Objects: Detailed Specifications

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

treated as a signed integer. Data types and sizes are specified individually for each property.

Although property data size is specified individually for each property, property value data of 2

bytes or larger comprises ECHONET Lite Communication Middleware data as ECHONET property

value data (EDT) beginning from the most significant byte.

6．2．2 ECHONET Property Value Range

The definition range for the ECHONET properties specified in this chapter and “APPENDIX,

Detailed Requirements for ECHONET Device objects,” and the treatment of property values when

the corresponding actual device property value operating range is not in agreement, are specified

below.

(1) When the actual device property value operating range corresponding to the ECHONET

property is smaller than the ECHONET property definition range and the actual device

property value assumes the upper or lower limit value, the upper or lower limit value of the

operating range is considered to be the property value.

Assuming that the ECHONET property definition range is 0x00–0xFD (0°C–253°C) and

the corresponding actual device operating range is 0x0A–0x32 (10°C–50°C), when the

actual device property value is the upper limit (50°C) of the operating range, the upper limit

value 0x32 (50°C) of the actual device operating range is considered as the ECHONET

property value, and when the actual device property value is the lower limit value (10°C),

the lower limit value 0x0A (10°C) is considered to be the ECHONET property value.

(2) When the actual device property value operating range corresponding to the ECHONET

property is larger than the ECHONET property definition range and the actual device

property value assumes a value outside the ECHONET property definition range, a code

showing an underflow or overflow becomes the property value.

Assuming that the ECHONET property definition range is 0x00–0xFD (0°C–253°C) and

the corresponding actual device operating range is –10°C to 300°C, when the actual device

property value assumes a value below the ECHONET property definition range, the

underflow code 0xFE becomes the property value; when the actual device property value

assumes a value above the ECHONET property definition range, the overflow code 0xFF

becomes the property value.

Table 6.1 shows the underflow and overflow codes for each data type.

Table 6.1 Data Types, Data Sizes, and Overflow/Underflow Codes

DATA TYPE DATA SIZE UNDERFLOW OVERFLOW

signed char 1 Byte 0x80 0x7F

signed short 2 Byte 0x8000 0x7FFF

signed long 4 Byte 0x80000000 0x7FFFFFFF

Unsigned char 1 Byte 0xFE 0xFF

Unsigned short 2 Byte 0xFFFE 0xFFFF

Unsigned long 4 Byte 0xFFFFFFFE 0xFFFFFFFF

 6-3

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

6 ECHONET Objects: Detailed Specifications

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

(3) For the handling of other ECHONET property values, see Chapter 1 in Part 5.

6．2．3 Class-specific Mandatory Properties

The properties defined as the “mandatory” properties for specific classes in the property

specifications in this chapter and “APPENDIX, Detailed Requirements for ECHONET Device

objects” shall be implemented as part of the respective classes.

However, transmission-only devices are exceptional. Even properties classified as "Mandatory"

need not always be implemented. For the handling of transmission-only devices, see Part 5.

6．2．4 Properties that Must Have a Status Change Announcement
Function

Any property may transmit a property value notification (0x73) message by an individual

notification or broadcast and a property value notification (requiring a response) (0x74) by an

individual notification at any time. However, the implementation of a property defined as a

“property that must have a status change announcement function” in the property specifications in

this chapter or “APPENDIX, Detailed Requirements for ECHONET Device objects” requires the

incorporation of a function to send a property value notification service message in the form of a

broadcast upon a change in the status (property value) of that property. A node profile object

(0x0EF001) is set to DEOJ. This announcement is not required for a node startup, as it is not to be

considered as a property status change.

A property that is not defined as a “property that must have a status change announcement function”

may also transmit a property value notification service message upon a change in the property value

of the property. This message does not have to be sent in the form of a broadcast.

6．2．5 Access Rules

The access rules regulate a group of services that can be implemented. In this specification, the

following three types are stipulated:

Set : Processing a service related to a property value write request

*Processing the contents of (1), (2) and (4) in 3.2.5

Get : Processing a service related to a property value read or notification request

*Processing the contents of (3), (4) and (5) in 3.2.5

Anno : Processing a property value notification service

Processing the acceptance of a property value notification request (0x63)

*Processing the contents of (5) in 3.2.5

6．3 Device Object Super Class Specifications

This section provides detailed specifications for the property configurations shared by all device

object classes in the class groups corresponding to device objects (class group codes 0x00–0x06).

These specifications are presented as the device object super class and detailed in “APPENDIX,

Detailed Requirements for ECHONET Device objects.”

 6-4

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

6 ECHONET Objects: Detailed Specifications

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

6．3．1 Overview of Device Object Super Class Specifications

The device object super class property is implemented by each device object class. Specifications

for the device object super class are shown below.

The device object super class property is implemented by each device object class. Specifications

for the device object super class are detailed in “APPENDIX, Detailed Requirements for

ECHONET Device objects."

6．4 Sensor-related Device Class Group Objects: Detailed Specifications

Stated in “APPENDIX, Detailed Requirements for ECHONET Device objects”

6．5 Air Conditioning-related Device Class Group Objects: Detailed
Specifications

Stated in “APPENDIX, Detailed Requirements for ECHONET Device objects”

6．6 Housing/Equipment-related Device Class Group Objects: Detailed
Specifications

Stated in “APPENDIX, Detailed Requirements for ECHONET Device objects”

6．7 Cooking/Housework-related Device Class Group Objects: Detailed
Specifications

Stated in “APPENDIX, Detailed Requirements for ECHONET Device objects”

6．8 Health-related Device Class Group Objects: Detailed Specifications

Stated in “APPENDIX, Detailed Requirements for ECHONET Device objects”

6．9 Management/Control-related Device Class Group Objects: Detailed
Specifications

Stated in “APPENDIX, Detailed Requirements for ECHONET Device objects”

6．10 Profile Object Class Group Specifications

This section provides detailed specifications for the property configurations shared by all profile

 6-5

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

6 ECHONET Objects: Detailed Specifications

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

object classes in the profile object class group (class group code 0x0E). These specifications are

presented as the profile object super class.

6．10．1 Overview of Profile Object Super Class Specifications

Profile object super class properties are implemented by each profile object class. Specifications for

the profile object super class are shown in Table 6.2 below.

Table 6.2 List of Profile Object Super Class Configuration Properties

Property Name EPC

 Contents of Property

Data Type

Data

Size

(Bye)

Access

Rule

Man

dato

ry

Annou

nce

Status

Change

Remar

ks
Value Area (Decimal notation)

Fault status 0x88

Indicates an encountered

abnormality (sensor trouble, etc.). unsigned

char
1 Get

Fault encountered = 0x41, no fault

encountered = 0x42

Manufacturer code 0x8A

Stipulated in 3 bytes
unsigned

char×3
3 Get O (To be specified by ECHONET

Consortium)

Place of business

code
0x8B

Stipulated in 3-byte

place-of-business code unsigned

char×3
3 Get

(Specified individually by each

manufacturer)

Product code 0x8C

Specified in ASCII code
unsigned

char×12
12 Get (Specified individually by each

manufacturer)

Serial number 0x8D

Specified in ASCII code
unsigned

char×12
12 Get (Specified individually by each

manufacturer)

Date of

manufacture
0x8E

Stipulated in 4 bytes

unsigned

char×4
4 Get

YYMD (1 byte/character)

YY：Year (0x07CF for 1999)

M：Month (0x0C for 12)

D：Day (0x14 for 20)

Status change

announcement

property map

0x9D

See Supplement 1 of

“APPENDIX Detailed

Requirements for ECHONET

Device objects”.

unsigned

char×

(MAX17)

Max.

17
Get O

Set property map 0x9E

See Supplement 1 of

“APPENDIX Detailed

Requirements for ECHONET

Device objects”

unsigned

char×

(MAX17)

Max.

17
Get O

Get property map 0x9F

See Supplement 1 of

“APPENDIX Detailed

Requirements for ECHONET

Device objects”

unsigned

char×

(MAX17)

Max.

17
Get O

Note: “o” in the status change announcement column denotes mandatory processing when the property

is implemented.

6．10．2 Property Map

Regarding each property specified in a profile object, three property maps specified for profile

object super-class shall be the same as those of the device object super-class specified in

“APPENDIX, Detailed Requirements for ECHONET Device objects.”

 6-6

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

6 ECHONET Objects: Detailed Specifications

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

6．11 Profile Class Group: Detailed Specifications

This section provides detailed code and property specifications for each ECHONET object

belonging to the profile class group (class group requirement code X1 = 0x0E). Table 6.3 provides a

list of the objects for which detailed specifications are provided in this section. Properties shared

(for which a succession relationship is established) by all profile object classes in this object class

group are indicated as super classes in Section 6．10 "Profile Object Class Group Specifications."

Regarding detailed items for each object class, the properties described in these super classes will

not be listed unless there are special additional specifications. In the detailed specifications, the

indication of an object as being “mandatory” signifies that, when the given object is present, the

combined property and service of that object must be implemented. One profile object class exists

at each node (this may not be the case when the profile object classes are not mandatory).

Table 6.3 Object Class List (Profile Class Group)

Class Group Code Class Code Object Class Name Mandatory

0x0E 0xF0 Node profile O

6．11．1 Node Profile Class: Detailed Specifications

Class group code: 0x0E

Class code: 0xF0

Instance code: 0x01 (general node), 0x02 (transmission-only node)

As an instance code, 0x01 is used for a general node and 0x02 for a transmit-only node.

 Property Name EPC

 Contents of Property

Data Type

Data

Size

(Bytes

)

Access

Rule
Mandator

y

Annou

nce

Status

Change

Rema

rks Value Area (Decimal notation)

Operating status 0x80
Indicates the node operating status. unsigned

char
1

Set
O (1)

Booting = 0x30, not booting = 0x31 Get O

Version information 0x 82

Indicates ECHONET Lite version

used by communication

middleware and message types

supported by communication

middleware.

unsigned

char×4
4 Get O (9)

1st byte: Indicates major version

number (digits to left of decimal

point) in binary notation.

2nd byte: Indicates minor version

number (digits to right of decimal

point) in binary notation.

3rd and 4th bytes: Indicate message

type with a bitmap.

Identification number 0x83

Number to identify the node

implementing the device object in

the domain.

unsigned

char × 17

17

Get O (10)

1st byte: lower communication ID

field

0xFE:

Set bytes 2 to 17 in the

manufacturer-specified format.

 Other:

 reserved for future use

 6-7

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

6 ECHONET Objects: Detailed Specifications

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

Fault content 0x89

Fault content
unsigned

short
2 Get (2)

0x0000-0x03EC (0-1004)

Unique identifier data 0xBF
Stipulated in 2 bytes unsigned

short
2 Set/Get (3) See (3) below.

Number of self-node

instances
0x D3

Total number of instances held by

self-node unsigned

char×3
3 Get O (4)

1st to 3rd bytes: Total number of

instances

Number of self-node

classes
0x D4

Total number of classes held by

self-node unsigned

char×2
2 Get O (5)

1st and 2nd bytes: Total number of

classes

Instance list

notification
0x D5

Instance list when self-node

instance configuration is changed

unsigned

char×(MA

X) 253

Max.

253
Anno O O (6)

1st byte: Number of notification

instances

2nd to 253rd bytes: ECHONET

object codes (EOJ3 bytes)

enumerated

Self-node instance list

S
0x D6

Self-node instance list

unsigned

char×(MA

X)253

Max.

253
Get O

(7)

1st byte: Total number of instances

2nd to 253rd bytes: ECHONET

object codes (EOJ3 bytes)

enumerated

Self-node class list S 0x D7

Self-node class list

unsigned

char×(MA

X) 17

Max.

17
Get O (8)

1st byte: Total number of classes

2nd to 17th bytes: Class codes (EOJ

high-order 2 bytes) enumerated

Note: “O” in the status change announcement column denotes mandatory processing when the property

is implemented.

(1) Operating status

Indicates whether or not the current operating status permits ECHONET Lite node

communications.

(2) Fault content

The values of 0x0000 to 0x03E8 will be the same as the code assignment for fault content

properties for device objects.

The values of 0x03E9 to 0x03EC are abnormality codes of ECHONET Lite middleware

adapters described in "Part III, ECHONET Lite Communications Equipment Specifications."

(3) Unique identifier data

Data that guarantees that each node can be uniquely identified within a domain and that each

node can be treated as an unchanging entity even after devices are moved (e.g., a change in

subnet). Decided using a default value or an assigned value. Unique identifier data preset on

the device side shall be called a default value, and that set by another ECHONET Lite node

after ECHONET Lite system participation shall be called an assigned value.

As a rule, unique identifier data must be held in non-volatile memory. The only exception to

this rule (i.e., when unique identifier data need not be held in a non-volatile memory) is when

the combination of manufacturer code property value and serial number property value

guarantees unique identification. If non-volatile storage is not available, the second-most

 6-8

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

6 ECHONET Objects: Detailed Specifications

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

significant bit (b6) is set to 0 as an exceptional default value so that setup can be performed by

an ECHONET node responsible for numbering (erasure upon power off is permissible). It is

prohibited for another ECHONET Lite node to set unique identifier information where b6 at

the first byte is 0.

Code description specifications are shown below.

First byte (high) Second byte (low)

#

b

7

＊

b

6

☆

b

5

☆

b

4

☆

b

3

☆

b

2

☆

b

1

☆

b

0

☆

b

7

☆

b

6

☆

b

5

☆

b

4

☆

b

3

☆

b

2

☆

b

1

☆

b

0

0: Non-volatile storage possible

(Node can hold unique identifier data in non-volatile memory)

1: Non-volatile storage not possible

0: Default value

1: Number value assignment by system

Randomly assigned codes

Each node sets the default value using the following method:

・ Values for the 14 bits 0x0001–0x3FFF are created randomly. Any method of random

number generation is acceptable.

・ The most significant bit (b7) must be either 0 or 1 in accordance with node specifications.

・ The second-most significant bit (b6) is set to 0.

Even if initial values are duplicated, the duplication can be resolved by newly assigning an

appropriate non-duplicate value from one of the nodes in the system. When newly assigning a

value, the value of the second-most significant bit must be set to 1. Note that the value of the

most significant bit is decided by the node in accordance with the above figure and cannot be

changed. In response to a request to write this property, the receiving side masks the most

significant bit.

(4) Number of self-node instances

The total number of instances across all classes of device objects disclosed by the self-node

The number of self-node instances does not include instances of node profile objects.

(5) Number of self-node classes

The total number of classes disclosed by the self-node, including node profile classes

(6) Instance list notification

A property to announce the configuration of instances to be disclosed to the network at startup.

This property also announces instances held at the self-node each time the configuration of

instances disclosed to the network is changed during system operation, such as instance

addition or deletion. This property is for announcement only by expecting another node as a

trigger for recognizing an instance change in detail. The number of instances reported by the

message in question is inserted in the first byte, while instances retained by the self-node are

listed in bytes 2-253 (EOJ3 bytes). However, the instance list does not include node profile

objects. The maximum number of instances announced at one time is 84. If the total instance

list numbers 85 or more, refer to “Part V, ECHONET Lite System Design Guidelines.” This

 6-9

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

6 ECHONET Objects: Detailed Specifications

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

instances of all device objects held at the self-node are targeted for announcement.

(7) Self-node instance list S

A list of the instances of device objects disclosed by the self-node. When the total number of

instances is 85 or more, the total number is inserted in the first byte as the instance count, with

the number of held instances in the second and subsequent byte, for transmission. The number

of instances to be inserted shall depend on the implementation. The value of the first byte is

specified as follows:

 0x00–0xFE : Total number of instances (when 254 or less) instruction

 0xFF : Overflow (when 255 or more) instruction

To acquire all instances from a node having 85 or more instances, an instance list notification

request shall be made to the node.

(8) Self-node class list S

A list of classes disclosed by the self-node, excluding the node profile. If the total number of

classes is 9 or more, the total number of classes is inserted in the first byte and classes to be

held are inserted in the second and subsequent bytes for transmission. The number of classes to

be inserted shall depend on implementation. The first byte shall be set as follows:

 0x00–0xFE : Total number of classes (when 254 or less) instruction

 0xFF : Overflow (when 255 or more) instruction

To acquire more instances from a node having 9 or more classes, an instance list notification

request shall be made to the node and classes to be held shall be judged.

Here is an example of property values in the node profile object of a node that has a node

profile object (EOJ = 0x0EF001), two temperature sensor objects (EOJ = 0x001101,

0x001102), and one humidity sensor object (EOJ = 0x001201).

・Number of self-node instances (0xD3): 0x000003 (temperature sensor *2, humidity

sensor *1)

・Number of self-node classes (0xD4): 0x0003 (node profile, temperature sensor, and

humidity sensor)

・Instance list notification (0xD5): 0x03001101001102001201 (10 bytes)

・Self-node instance list S(0xD6): 0x03001101001102001201 (10 bytes)

・Self-node class list S (0xD7): 0x0200110012 (5 bytes)

(9) Version information

A 2-byte binary value shows the version number of the specification corresponding to the

communication middleware, and a 2-byte bitmap indicates the message types supported by the

communication middleware.

The first byte indicates the major version number (digits to the left of the decimal point). The

second byte indicates the minor version number (digits to the right of the decimal point). To

indicate Version 2.10, for instance, the contents of the first and second bytes are 0x02 (2) and

0x0A (10), respectively.

The third and fourth bytes indicate the supported message types. When the bit value is 1, it

 6-10

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

6 ECHONET Objects: Detailed Specifications

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

means that the associated message type is supported. The figure below shows the relationship

between the bits and supported message types.

(10) Identification number

Identification number refers to a number used to identify an object uniquely within a domain.

Since ECHONET Lite does not define protocol types for lower communication layers, only

0xFE is supported as protocol types for lower communication layers.

The manufacturer-specified format (0xFE) consists of a manufacturer code field to store the

code of each manufacturer and a field defined by each manufacturer.

The first to third bytes indicate a 3-byte manufacturer code specified by the ECHONET

Consortium.

Byte 4 and later store the unique ID of each vendor. Each vendor shall ensure that the codes

will not overlap.

Manufacturer

code

(3 bytes)

Unique ID section (defined by the

manufacturer)

(13 bytes)

b7 b6 b5 b4

0 0 0 0 0 0 ☆ ☆

b3 b2 b1 b0

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

Third bye Fourth byte

Fourth byte
b0-b7 : Reserved for future use

Third byte

Third byte

b2-b7: Reserved for future use

b1: Arbitrary message format

b0: Specified message format

Third byte

Third byte

Third byte

 i

© 2011 (2013) ECHONET CONSORTIUM ALL RIGHTS RESERVED

ECHONET Lite SPECIFICATION

II ECHONET Lite Communication Middleware Specification

Appendix 1

Date: May 31, 2013

 Version 1.10

ECHONET CONSORTIUM

Appendix 1 Error Processing at Message Reception

If an error is found in an ECHONET Lite message received, process it as follows:

Error Type Definition Error Processing

EOJ error A DEOJ code specified in a received

ECHONET Lite message does not match

the EOJ code of an ECHONET object

installed in the self ECHONET Lite node.

Or the instance code of the DEOJ code

specified in the received ECHONET Lite

message is 0x00, and, it does not match

the combination of the EOJ class group

code and class code of an ECHONET

object installed in the ECHONET Lite

node.

In all cases:

Discard

EPC error

An EPC specified in a received

ECHONET Lite message free of an EOJ

error does not match the EPC of an object

installed in the self ECHONET Lite node.

ESV=0x60 to 0x63,0x6E:

Response not possible

ESV=0x74:

Response to process

ESV is not as above:

Discard ESV error

An EPC specified in a received

ECHONET Lite message free of an EOJ

or EPC error matches the EPC of an object

installed in the self ECHONET Lite node.

However, an ESV not complying with the

access rules is specified.

EDT size error The EDT size of a received ECHONET

Lite message free of an EOJ or EPC error

does not match the EDT size specified in

the ECHONET Lite Specification.

The EDT size assumed in the ECHONET

Lite Specification is the size of each

property size specified in Chapter 3

"Frame Format" and "APPENDIX,

Detailed Requirements for ECHONET

Device objects."

ESV=0x60,0x61,0x6E:

Discard or response not

possible

ESV=0x74:

Discard or response to

process (EDT size: 0)

Response to process (in

other cases)

	Contents
	Chapter 1 Overview
	1．1 Basic Concept
	1．2 Positioning on Communications Layers
	1．3 References

	Chapter 2 ECHONET Objects
	2．1 Basic Concept
	2．2 Device Objects
	2．3 Profile Objects
	2．4 ECHONET Objects as Viewed from Application Software

	Chapter 3 Message Structure (Frame Format)
	3．1 Basic Concept
	3．2 Frame Format
	3．2．1 ECHONET Lite Header (EHD)
	3.2.1.1 ECHONET Lite Header 1 (EHD1)
	3.2.1.2 ECHONET Lite Header 2 (EHD2)

	3．2．2 Transaction ID (TID)
	3．2．3 ECHONET Lite Data (EDATA)
	3．2．4 ECHONET Object (EOJ)
	3．2．5 ECHONET Lite Service (ESV)
	3．2．6 Processing Target Property Counters (OPC, OPCSet, and OPCGet)
	3．2．7 ECHONET Property (EPC)
	3．2．8 Property Data Counter (PDC)
	3．2．9 ECHONET Property Value Data (EDT)

	Chapter 4 Basic Sequences
	4．1 Concept
	4．2 Basic Sequences for Object Control
	4．2．1 Basic Sequences for Service Content
	4．2．2 Basic Sequences for Object Control in General
	4．2．3 Detailed sequences concerning service content
	4.2.3.1 Property value write service (no response required) [0x60, 0x50]
	4.2.3.2 Property value write service (response required) [0x61,0x71,0x51]
	4.2.3.3 Property value read service [0x62,0x72,0x52]
	4.2.3.4 Property value write & read service [0x6E,0x7E,0x5E]
	4.2.3.5 Property value notification service [0x63,0x73,0x53]
	4.2.3.6 Property value notification service (response required) [0x74, 0x7A]

	4．3 Basic Sequence for ECHONET Lite Node Startup
	4．3．1 Basic Sequence for ECHONET Lite Node Startup

	Chapter 5 ECHONET Lite Communications Processing Block Processing Specifications
	5．1 Basic Concept
	5．2 Object Processing Specifications
	5．3 Send Message Creation/Management Processing
	5．4 Startup Processing

	Chapter 6 ECHONET Objects: Detailed Specifications
	6．1 Basic Concept
	6．2 ECHONET Properties: Basic Specifications
	6．2．1 ECHONET Property Value Data Types
	6．2．2 ECHONET Property Value Range
	6．2．3 Class-specific Mandatory Properties
	6．2．4 Properties that Must Have a Status Change Announcement Function
	6．2．5 Access Rules

	6．3 Device Object Super Class Specifications
	6．3．1 Overview of Device Object Super Class Specifications

	6．4 Sensor-related Device Class Group Objects: Detailed Specifications
	6．5 Air Conditioning-related Device Class Group Objects: Detailed Specifications
	6．6 Housing/Equipment-related Device Class Group Objects: Detailed Specifications
	6．7 Cooking/Housework-related Device Class Group Objects: Detailed Specifications
	6．8 Health-related Device Class Group Objects: Detailed Specifications
	6．9 Management/Control-related Device Class Group Objects: Detailed Specifications
	6．10 Profile Object Class Group Specifications
	6．10．1 Overview of Profile Object Super Class Specifications
	6．10．2 Property Map

	6．11 Profile Class Group: Detailed Specifications
	6．11．1 Node Profile Class: Detailed Specifications

	Appendix 1 Error Processing at Message Reception

