
ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

1 / 114
©2018-2022 ECHONET Consortium

ECHONET Lite Web API Guidelines
API specifications section
Ver.1.1.4

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

2 / 114
©2018-2022 ECHONET Consortium

Revision record

Date Version Description

October

03, 2018
Ver.1.00 Established, published for general public

March 27,

2020

Ver.1.1.0

draft
Change in versioning policy: 1.**->1.*.*

Changed the name of this document to "API Specifications Section".

Added Structure of the Guidelines (Chapter 3), Applied Service Functions (Chapter 7).

Deleted previous descriptions of 3.7 "Streamlining target use case".

Added "Example of realizing INF using Webhook" to 5.10.

Reorganized the contents of use case in Chapter 4.

Added "PATCH" method to 6.5.

Added explanation related to EPC/EDT/Action to 6.4.

Added a list of basic model API list to Table 5-1.

Added a API list of device object operations to Table 6-3.

Revised wording of "user" and "client" throughout.

August 27,

2020
Ver.1.1.0 Added explanation related to Action Object to 5.7.

Changed examples of SetGet in 6.5 to Set examples.

Revised wording of "resource" and "service" throughout.

Added bulks and histories to 5.5 as service examples.

October

19, 2020
Ver.1.1.1 Corrected contents in group description in 7.2 (to correct clerical errors).

June 25,

2021
Ver.1.1.2 Replaced "querySchema" in 5.7 and 7.5.2 with "urlParameters".

July 30,

2021
Ver.1.1.3 Corrected "urlParameters" clerical errors in Table 5-4.

Added description of abort in 7.1.

Deleted unnecessary descriptions of group description in 7.2.

Corrected "Type" of "responses[].status" in 7.2.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

3 / 114
©2018-2022 ECHONET Consortium

Date Version Description

Deleted unnecessary descriptions of history description in 7.3.

Corrected "multipleOf" and "id/deviceId" clerical errors.

May 27,

2022
Ver.1.1.4 Renewed content of authentication/authorization in 5.11.

Deleted "POST /devices/<device id>/echoCommands" in 6.5. Changed specifications to the

nodes-supported version and added as 7.7.

Abolished null in each description of bulk/group/history in 7.1, 7.2, and 7.3.

Corrected clerical errors in progress key values in figure and example in 7.1.

Added server pre-registration function in 7.2.

Added a guideline for combined uses of defined devices in 7.6.

The specifications published by the ECHONET Consortium are established without regard to industrial property rights (e.g.,

patent and utility model rights). In no event will the ECHONET Consortium be responsible for industrial property rights to

the contents of its specifications.

In no event will the publisher of these specifications be held liable for any damages arising out of their use.

The original language of the ECHONET Lite Specifications is Japanese. This English version is a translation of the Japanese

version; in case of any queries about the English version, refer to the Japanese version.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

4 / 114
©2018-2022 ECHONET Consortium

CONTENTS

1. Introduction

1.1. Terms and definitions

1.2. Reference standard

2. Target scope of ECHONET Lite Web API

3. Structure of the Guidelines

4. ECHONET Lite Web API use cases

4.1. Obtaining status, control, and notification

4.2. Obtaining device list/management information

4.3. Bulk operation of devices

4.4. Virtual devices

4.5. Server logs

4.6. Authentication/authorization

5. Guidelines for Web API models

5.1. Basic policy

5.2. Application name

5.3. API versions

5.4. Obtaining API version list

5.5. Obtaining target service type list

5.6. Obtaining device list

5.7. Obtaining device information (device description)

5.8. Property value operation of device objects (e.g. SET/GET)

5.9. Handling client caches

5.10. Property value notification of device objects (INF)

5.11. Authentication/authorization (introducing cases)

6. Guidelines for mapping ECHONET Lite specifications

6.1. Mapping ECHONET Lite frames

6.2. Mapping DEOJ

6.3. Mapping ESV

6.4. Mapping EPC and EDT

6.5. Mapping method and operation of ECHONET Lite device objects

6.6. Action

6.7. Processing errors

6.8. Device information

7. Applied service functions

7.1. Batch direction for multiple commands (bulks)

7.2. Grouping devices (groups)

7.3. Historical data (histories)

7.4. Guidelines for additional expansion of the device list

7.5. Guidelines for expansion of device information (device description)

7.5.1. Adding new devices

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

5 / 114
©2018-2022 ECHONET Consortium

7.5.2. Expansion for existing device information

7.6. Guidelines for combined uses of defined devices

7.6.1. Guidelines for deviceType names

7.6.2. Guidelines for property names

7.6.3. Guidelines for definition of Device Description

7.7. echoCommand

8. Conclusion

9. Acknowledgments

FIGURES

Figure 1-1 Assumed models of these guidelines

Figure 2-1 Basic system configuration diagram in the scope of this guideline

Figure 2-2 Target scope of these guidelines

Figure 3-1 Updating policy for API specification section and Device specification section

Figure 4-1 Use case: Monitoring, control and notification

Figure 4-2 Use case: Obtaining device list/management information

Figure 4-3 Use case: Bulk operation

Figure 4-4 Use case: virtual device

Figure 4-5 Use case: Server logs

Figure 4-6 Use case: Authentication/authorization

Figure 5-1 Example of realizing INF using MQTT

Figure 7-1 Holistic overview of bulk execution

Figure 7-2 Concurrent mode (asynchronous) and sequential mode (synchronous)

Figure 7-3 Concurrent mode: executing until d)

Figure 7-4 Sequential mode: executing until b)

Figure 7-5 Sequential mode: c) stopped after execution

Figure 7-6 Overview of group execution

Figure 7-7 Overview of histories execution

Figure 7-8 Relationship of historical data set and subset

TABLES

Table 5-1 API related to the basic model specified in this document

Table 5-2 Detailed response if obtaining device list

Table 5-3 Detailed response if obtaining device information

Table 5-4 Details of property objects

Table 5-5 Details of Action Objects

Table 6-1 Response of ECHONET Lite frames

Table 6-2 Response with ESV

Table 6-3 API related to operation of device objects

Table 6-4 HTTP status code

Table 6-5 Use cases for HTTP status codes

Table 6-6 Error response of service level

Table 6-7 Variation of error type

Table 7-1 API for batch direction of multiple commands

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

6 / 114
©2018-2022 ECHONET Consortium

Table 7-2 API related to device grouping

Table 7-3 APIs for historical data

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

7 / 114
©2018-2022 ECHONET Consortium

1. Introduction

This document is a guideline summarizing points of view and reference cases to be considered in order to realize service

provision via Web API using ECHONET Lite standard. This guideline organizes policies that should be referred to in case

that configuring systems using Web API and implementing applications, to offer ECHONET Lite models to clients via server

environments and further use them to promote more use of ECHONET Lite, including development of affiliated services

and applied applications. Figure 1-1 shows an overall model envisioned in these guidelines, in which various service

providers (clients) can access the ECHONET Lite Web API-supported cloud (server) in a unified style, enabling operation

and monitoring of IoT devices placed in users’ houses/premises via the cloud. Further spread and expansion of ECHONET is

expected through publication of this document.

The following Chapter 2 specifies the target scope of these guidelines, Chapter 3 specifies the structure of the guideline

document and Chapter 4 clarifies use cases that may be studied. Chapter 5 describes resource design, interface design, and

authentication/authorization methods as a basic policy to promote Web API, Chapter 6 describes rules and error

expressions related to application (convert) of ECHONET Lite specifications to Web API. Chapter 7 discusses the guidelines

for providing a more sophisticated API as an applied model.

This document is created as a guideline to indicate design policy ("API specifications section"), while a separate document

provides specific data types (equivalent to property) of device objects to be converted to Web API and various service

definitions as a "Device specification section".

ECHONET Lite
Web API

Cloud
(server)

Service providers
(client)

User’s house
（ECHONET Lite-base）

AI

Figure 1-1 Assumed models of these guidelines

1.1. Terms and definitions

term description

Web API

An interface between systems using the HTTP(S) protocol where data is exchanged using the

request/response method. In this document, this term particularly refers to those to be provided by

system at the called side (server side).

RESTful A design principal to specify resources to be operated using URI and HTTP methods

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

8 / 114
©2018-2022 ECHONET Consortium

term description

JavaScript

Object

Notation

(JSON)

A lightweight text-based and language-independent data exchange format

OAuth2.0 An open standard to perform authorization

OpenID

Connect

One of the expanded specifications of OAuth 2.0, which defines the authentication/authorization

function for linking IDs.

1.2. Reference standard

Standards referenced in this document are as stated below. Matters not specifically explained in this document are as

described in each document.

[EL] The ECHONET Lite Specification Version 1.01 or later

[ELOBJ] ECHONET Specification APPENDIX: Detailed Requirements for ECHONET Device Objects Release J or later

[HTTP] Hypertext Transfer Protocol:

HTTP Semantics (RFC 9110), https://www.rfc-editor.org/info/rfc9110

HTTP Caching (RFC 9111), https://www.rfc-editor.org/info/rfc9111

HTTP/1.1 (RFC 9112), https://www.rfc-editor.org/info/rfc9112

[JSON] The JavaScript Object Notation (JSON) Data Interchange Format (RFC 8259), https://www.rfc-

editor.org/info/rfc8259

[OAUTH] OAuth:

OAuth 2.0 for Native Apps (RFC 8252), https://www.rfc-editor.org/info/rfc8252

The OAuth 2.0 Authorization Framework: Bearer Token Usage (RFC6750), https://www.rfc-

editor.org/info/rfc6750

[OIDC] OpenID Connect Core 1.0 incorporating errata set 1,https://openid.net/specs/openid-connect-core-1_0.html

2. Target scope of ECHONET Lite Web API

In this chapter, Figure 2-1 describes the system configuration assumed as a target scope.

As a rule, the model assumed should have a controller supporting ECHONET Lite in a house (one or more units can be

connected), and multiple ECHONET Lite devices are connected under control of the controller (left in the figure). Two or

more combinations of controllers and devices may exist. Normally, assumed cases are connected to server X (cloud)

possessed by a vendor through a controller. However, cases that can be connected to server X without going through a

controller can be included in the assumed cases (center in the figure). Further, even devices not supporting ECHONET Lite

can be included in the scope, if they can be converted to the Web API models described in this document by mapping

them to server X (right in the figure). Note that this guideline does not handle how to map these controllers and devices to

server X, since it depends on implementation.

Also note that this document presupposes that server X knows client A, who is the provider of the service app beforehand,

and gives appropriate authentication/authorization (or is capable of doing so). In this document, specific

https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9111
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8252
https://www.rfc-editor.org/info/rfc6750
https://openid.net/specs/openid-connect-core-1_0.html

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

9 / 114
©2018-2022 ECHONET Consortium

authentication/authorization procedures are deemed as matters to be stipulated by implementation type for each server,

so only some cases are introduced here.

Negotiations between clients such as client A and client B, as well as among servers such as server X and other servers are

allowed; however, this guideline does not cover such activities. In this document, a policy is established to only stipulate

Web API that are provided by the server side between client and server, to simplify the discussion.

Server

EL devicesEL devicesECHONET Lite Devices

Controller

WebAPI

EL devicesEL devicesECHONET Lite Devices

Controller

EL devicesEL devicesnon ECHONET Lite Devices

Controller

Homes

- - -Client A Client B Client X

Figure 2-1 Basic system configuration diagram in the scope of this guideline

Once again, the scope of the API specified by these guidelines is shown in Figure 2-2. The ECHONET Lite Web API covers

only the Web API presented from server to client. It does not cover the communication part from server to home (that is

vendor-specific).

Client

Various
service

providers

Application scope of
ECHONET Lite

Web API
Vendor -specific

(not covered by the guidelines)

Server Home

Figure 2-2 Target scope of these guidelines

3. Structure of the Guidelines

The ECHONET Lite Web API Guidelines consist of an "API specifications section" (this document) and a "device specification

section" (separate document).

"API specifications section" provides use cases covered by the guidelines, Web API model policies, and mapping policies

from the ECHONET Lite specifications to Web API.

The "device specification section" mainly provides examples of device descriptions for each device (schema specifications

for implemented data types, and the like: discussed later), as well as data types to be used and naming guidelines.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

10 / 114
©2018-2022 ECHONET Consortium

Under the update and maintenance policies for each specification section is as follows: the API specification section will be

updated in accordance with functional enhancements and specification additions for applied services and the like, while the

device specification section will be updated in accordance with additions to target devices and properties.

Previous
specifications

+ Update
specifications

Update of API specifications section Update of device specifications section

Ver. x1

As additional supported devices and properties are added

Ver. yVer. x2

As functions are
expanded and
specifications added

+ Update
specifications

Figure 3-1 Updating policy for API specification section and Device specification section

These guidelines use semantic versioning. The format must be version X.Y.Z (major version, minor version, and patch

version), where the major version is increased if there is a loss of compatibility with API changes, and the minor version is

increased if functions are added or changed while maintaining backward compatibility. The patch version is increased if

bugs are fixed with backward compatibility.

4. ECHONET Lite Web API use cases

This chapter summarizes use cases covered by these guidelines.

4.1. Obtaining status, control, and notification

Use case that maps GET/SET/INF, a basic operation (ESV) of ECHONET Lite (Figure 4-1). For GET, in consideration of delays

in response to in-home devices, cases that return data cached within the server to the client should be included. SET

basically assumes operations to in-home devices. Like INF, cases that sends status change announcement and the like

generated by devices to clients via the server as soon as possible are assumed.

Server

cache

Monitoring

EL devicesEL devicesECHONET Lite Devices

Controller

Control

EL devicesEL devicesECHONET Lite Devices

Controller

Notification

EL devicesEL devicesECHONET Lite Devices

Controller

Client A Client B Client C

Figure 4-1 Use case: Monitoring, control and notification

4.2. Obtaining device list/management information

Use case that obtains device list (left of Figure 4-2). Potential cases should include those obtaining a list of all devices in the

device user’s house or a list of devices designated by equipment type (e.g. air conditioner only). In addition to the above,

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

11 / 114
©2018-2022 ECHONET Consortium

potential cases should include those that handle a whole list or a part extracted from a list of devices possessed by all

device users contained in the server.

ECHONET Lite controllers are equipped with a controller class as a device object , and they can retain device management

information such as a list of devices that the controller manages as optional functions. Assumed cases include those that

map the device management information to the server side to enable the client to obtain it. Assumed device management

information includes cases where device management information cached to a server is updated with notification, only if

changes (e.g. adding/deleting device) occur after caching on the server (right of Figure 4-2).

Server Server

Device list

Management
information
of devices

Cache

ECHONET Lite
Devices

Controller

ECHONET Lite
Devices EL devicesEL devices

ECHONET Lite
Devices

Controller

Obtaining management information

Client X Client Y

Figure 4-2 Use case: Obtaining device list/management information

4.3. Bulk operation of devices

With ECHONET Lite, bulk operations to all devices under control of a controller or bulk operation by designating a device

(e.g. all air conditioners) are supported. Use cases that enable client to obtain these. Also, other cases that simultaneously

operate devices in two or more device users’ houses can be included.

In case that operating multiple devices simultaneously (within a home or across multiple device users), operations may be

performed on the same properties for some cases, while in other cases operations are performed on different properties

for each device. There may also be cases where the operating instructions (GET/SET) differ from device to device.

Otherwise, multiple operations may be performed on a single device. Either of the cases above can be considered cases

where multiple operations can be performed on one or more devices with a single instruction.

Server

Batch operation of devices

ECHONET Lite
Devices

Controller

ECHONET Lite
Devices

Client X

ECHONET Lite
Devices

Figure 4-3 Use case: Bulk operation

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

12 / 114
©2018-2022 ECHONET Consortium

4.4. Virtual devices

Use cases that can virtually extend device functions through various information processing functions if mapping in-home

devices on a server. Here is a list of three assumed examples as a variation to make devices look as if they are virtual

devices (Figure 4-4).

For example, in case that mapping an air conditioner supporting certain device object specifications in Appendix Release X,

it is possible to make the air conditioner look to a client like one supporting Release Y, if no change in relation to the

properties related to the contents corresponding with the specifications from the time of Release X to the latest Release Y

occur. The benefit is that it enables air conditioners that only support previous models to support apps provided by clients

which only support new models through appropriate conversion on a server, if it can be handled the same way as air

conditioners supporting new models (see left side of the figure).

Or, it is possible to combine an in-home air conditioner and some kind of sensors to make them to be considered as a

virtual air conditioner with new sensors so that they can be provided to client’s app. It is allowed to handle air conditioners

and sensors as individual devices. However, combining them as one may expand the scope of the app (see central part of

the figure).

Even if an air conditioner itself does not have a particular function, it may be disclosed as an extended air conditioner to a

client by adding functions on the server. An air conditioner with weather forecasting functions would work well (see right

side of the figure).

As a variation of cases handling virtual devices or handling devices not supporting ECHONET Lite may be possible.

Also, collecting energy-related data retained by multiple energy-related devices (e.g. power-generating capacity, power

storage capacity, and load information) to provide them to the client as virtual (EMS) information devices by integrating

them within the server may be possible.

Treatment as a single virtual device may be possible if grouping multiple devices under the same purpose (for example,

specifying an operation API that enables acquisition of energy information and energy control such as

charging/discharging).

Server

air conditioner
(release X version)

Controller

Air
conditioner

Controller

Air conditioner

Controller

Client A Client B Client C

New
sensor

Virtual air conditioner
(release X version)

Virtual air conditioner
with new sensor

Expandied virtual
air conditioner +α

Figure 4-4 Use case: virtual device

4.5. Server logs

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

13 / 114
©2018-2022 ECHONET Consortium

Services accumulating data that can be obtained from in-home devices and sensors on the server as accumulated logs to

use them for living activity analysis may also be possible.

This is a style to provide information summarized or processed by a device to a client, rather than that of directly-mapped

in-home ECHONET Lite devices (Figure 4-5).

Server

Client A Client B

accumulated log

Figure 4-5 Use case: Server logs

4.6. Authentication/authorization

For cases handling customer information such as the one stipulated in this document, it is common for a client to be

required to go through some kind of authentication or authorization if receiving services from servers, to begin with.

Specifically, the server should prepare a resource group that admits access by each client, after establishing a session using

protocols such as OAuth2.0 [OAUTH], to actually provide services.

Also, on the server, a mechanism that enables addition/deletion of customer information, and addition/deletion of

customer’s controllers/devices is required. Providing these client management and device management functions to the

outside through Web API may be possible. However, a style performing necessary operations between the server and client

beforehand may also be possible (Figure 4-6).

Server

Client A Client B

certification / authorization

Resources
for client A

Resources
for client B

device

Add / delete
controllers or devices

Add / delete users

user

Figure 4-6 Use case: Authentication/authorization

5. Guidelines for Web API models

5.1. Basic policy

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

14 / 114
©2018-2022 ECHONET Consortium

As a rule, this guideline adopts REST (REpresentational State Transfer) as a Web API model. The REST enables a simple

control for URI based on the HTTP [HTTP] method. These days, the REST serves as a substantial standard of Web API. This

guideline is designed as a whole to be a Rest(ful) API by adopting the currently dominant data format, JSON [JSON].

The API is designed with four principles of REST in mind: (1) statelessness by HTTP, (2) visibility of address by URI, (3)

integrated interface through HTTP methods, and (4) connectivity among resources by JSON.

Identification method of resources is based on the following:

Format Scheme://{host name}/{pass to resources}
Example https://www.example.com/elapi/v1/devices/12345678

This example specifies a device data resource with ID 12345678 on host www.example.com using the HTTPS scheme (port

number omitted). Like the above, the REST API that designates resources by hierarchization using a path is a basic model.

In addition to the above, a query API that designates resources by query parameter can be complementarily selected. The

following sections describe how to designate specific resources.

Many of the actions on the resource are assumed to be implemented by HTTP methods on the resource's URI or query

parameters of the URI, with reference to the create, reference, update and delete operations expressed in CRUD (Create,

Read, Update and Delete).

The followings are stipulated as basic policies other than the above.

The HTTP version is HTTP/1.1[HTTP].

The JSON format is specified in RFC 8259, specifying "application/json" as the Content-Type and using UTF-8

character encoding. On the client side, specify "application/json" as the media type in the Accept request

header.

Use HTTPS for the scheme.

The date and time format is based on RFC 3339 (ISO 8601) and follows the notation below, taking into account the

time zone.

2018-01-02T12:34:56+09:00

However, where individual items such as the year, month, day, hour, minute and second need to be

specified, they will follow the individual descriptions.

The naming convention for property names and other attribute names specified in the resources is to use lowercase

for single words, but lower camel case for compound words. For the sake of illustration, this guideline uses the '< >'

bracket to express arbitrary values or descriptions.

The device description format of ECHONET Lite device objects (see below) is partly described with reference to the

WoT model being developed by the W3C.

The following sections describe examples for designating/operating the following services.

Application name

Obtaining API version and API version list

Obtaining target service type list

Obtaining device list

Obtaining device information (device description)

Property value operation of device objects (e.g. SET/GET)

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

15 / 114
©2018-2022 ECHONET Consortium

Handling caches

Property value notification of device objects (INF)

Authentication/authorization

In the examples below, the (request/response) header part of the contents of the request line, request header and message

body in an HTTP(S) request and the status line, response header and message body in an HTTP(S) response are omitted

unless it is necessary to specify otherwise.

Table 5-1 indicates an API list related to the basic model. The following explains the APIs individually.

Table 5-1 API related to the basic model specified in this document

http

method
path description

GET /elapi Obtaining API version list

GET /elapi/v1 Obtaining target service type list

GET
/elapi/v1/<service specification

optional>/devices
Obtaining device list

GET /elapi/v1/devices/<device id>
Obtaining device information (device description) (service

types are omitted)

5.2. Application name

The name of the application using the ECHONET Lite Web API specified in this document is "elapi". Embedding the

application name "/elapi" as a path in the top hierarchy indicates that it is a component of the ECHONET Lite Web API.

If a vendor wishes to use a different application name than "elapi", the vendor’s preferred name may be used. In the

examples given in the following parts of this document, the application name should be referred to as "elapi". However, if

using the vendor’s preferred name, replace them as appropriate.

Reasons that this document selected methods to contain particular passes

As a method to designate API, the following examples of descriptions may be suitable.

(1). If contained in a particular path: https://www.service.xx/elapi/xxx

(2). If distinguishing by host name: https://elapi.service.xx/xxx

Although the form of implementation of the web application and the scale/load distribution of the service should

also be taken into account, this document uses method (1), which allows for a specific path, because it is possible

to change the target web application server using a reverse proxy or other means. As mentioned above, format (2)

is also acceptable when using vendor-specified application names.

5.3. API versions

The API version specified in this policy is maintained in the form of a revision number, currently "v1". If detailed

specification additions or changes are to be made in the future, if they are specified within the scope of backward

compatibility, they are applied without increasing the version. If incompatible specification changes become necessary in

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

16 / 114
©2018-2022 ECHONET Consortium

the future, it is the policy to establish "v2" to distinguish between specifications (the major version is assumed to have

been updated from 1 to 2). The version specification adopts the method of embedding version information in the URI.

As with the "application name" above, it is not necessary to follow this provision when implementing vendor-specific

versioning. The vendor must follow the policy specified by the vendor. The examples in this document refer to the API

version as "v1", but it should be read in the format preferred by the vendor.

Reasons to select version management by designating URI

There are roughly three methods for designating versions.

(1). To be included in URI: https://www.service.xx/elapi/v1

(2). To be included in query parameters: https://www.service.xx/elapi/xx/80234512?v=1.5

(3). To be included in the header HTTP: Accept: application/vnd.echonet.v2+json

Method (2) above has the advantage of allowing omission of version information. However, if the default version is

the latest, problems are likely to occur if changing API. Also, method (3) above needs to respond by giving

"Vary:Accept" if it is possible to respond, a header together with "Content-Type:

application/vnd.echonet.v2+json", if requesting the server as a vendor-specific media type. However, there

are some other cases that do not accept (unique media type), unless it falls in line with "Content-Type

application/json". This document adopts (1) on the grounds that it is easily identifiable and widely used by

many Web API-providing services.

5.4. Obtaining API version list

Designating "/elapi" to the top URI to request with the GET method makes it possible to obtain a version list that the

server responds to.

■ Request

GET /elapi HTTP/1.1

■ Response

{
 "versions": [
 {
 "id": "v1",
 "status": "CURRENT",
 "updated": "2018-01-01T12:34:56+09:00"
 },
 {
 "id": "v2",
 "status": "EXPERIMENTAL",
 "updated": "2018-01-02T01:02:03+09:00"
 }
]
}

https://www.service.xx/elapi/v1
https://www.service.xx/elapi/xx/80234512?v=1.5

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

17 / 114
©2018-2022 ECHONET Consortium

The above examples show that they support two versions of "v1" and "v2". At least one version must be supported. The

version that corresponds with this document is "v1", and the one to be updated in the future is "v2". The following

conditions can be designated to "status" according to development level.

CURRENT: latest stable version

SUPPORTED: stable version (not the latest version)

DEPRECATED: already abolished versions

EXPERIMENTAL: versions under development/experiment

With "updated", date/time update can be designated, enabling the server-side system to describe a timing to make some

kind of changes. Designation of "id" is mandatory, while "status" and "updated" are optional.

5.5. Obtaining target service type list

Designating "/elapi/<version id>" and demanding with the GET method enables the server to obtain a service type list

immediately under "/elapi/<version id>".

■ Request

GET /elapi/v1 HTTP/1.1

■ Response

{
 "v1": [
 {
 "name": "devices",
 "descriptions": {
 "ja": "devicesの説明⽂",
 "en": "device resource"
 },
 "total": 10
 },
 {
 "name": "controllers",
 "descriptions": {
 "ja": "controllersの説明⽂",
 "en": "controller resource"
 },
 "total": 1
 },
 {
 "name": "sites",
 "descriptions": {
 "ja": "sitesの説明⽂",
 "en": "sites resource"
 },
 "total": 5
 },
 {
 "name": "users",
 "descriptions": {

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

18 / 114
©2018-2022 ECHONET Consortium

 "ja": "usersの説明⽂",
 "en": "user resource"
 },
 "total": 100
 },
 {
 "name": "groups",
 "descriptions": {
 "ja": "groupsの説明⽂",
 "en": "group resource"
 },
 "total": 3
 },
 {
 "name": "bulks",
 "descriptions": {
 "ja": "bulksの説明⽂",
 "en": "bulks resource"
 },
 "total": 10
 },
 {
 "name": "histories",
 "descriptions": {
 "ja": "historiesの説明⽂",
 "en": "histories resource"
 },
 "total": 20
 }
]
}

The example above shows that seven service types are supported: devices, controllers, sites, users, groups, bulks and

histories. This document provides examples of some of these service types, but similar service types may be specified by

the server at its discretion. At least one service type should always be offered. Service types that are not offered to clients

should not be described. The description of each service type is given in the "descriptions" (mandatory) and the total

number of each object is given in the "total" (optional). The "description" must be an arbitrary string and the "total"

must be an integer. In principle, the type of service provided to each client can be changed (switched) according to the

requirements and authorizations of the client (recipient) and the content of the service provided.

The following part of this guideline stipulates device, bulk, group, and history cases. Other service types can be arbitrarily

stipulated and are outside the scope of this document.

5.6. Obtaining device list

Designating "/elapi/v1/<service designation type (can be omitted)>/devices" to GET can obtain a device list.

■ Request

GET /elapi/v1/devices HTTP/1.1

■ Response

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

19 / 114
©2018-2022 ECHONET Consortium

{
 "devices": [
 {
 "id": "0xFE000006123456789ABCDEF123456789AB",
 "deviceType": "generalLighting",
 "protocol": {
 "type": "ECHONET_Lite v1.13",
 "version": "Rel.J"
 },
 "manufacturer": {
 "code": "<manufacturer code>",
 "descriptions": {
 "ja": "<manufacturer name(⽇本語)>",
 "en": "<manufacturer name(English)>"
 }
 }
 },
 {
 "id": "",
 }
]
}

Table 5-2 Detailed response if obtaining device list

Property Type Required Description Example

id string Yes Device-specific ID "0xFE000006…AB"

deviceType string Yes Device type "generalLighting"

protocol object Yes Used protocol −

protocol.type string Yes ECHONET Lite version number "ECHONET_Lite v1.13"

protocol.version string Yes Appendix release number "Rel.J"

manufacturer object Yes Manufacturer information −

manufacturer.code string Yes Manufacturer code "0x******"

manufacturer.descriptions object Yes Manufacturer name −

manufacturer.descriptions.ja string Yes Name (Japanese) "Aベンダ"

manufacturer.descriptions.en string Yes Name (English) "Vendor Name A"

The "id" is the unique ID of the device and must be a unique value that is not duplicated in the system (under

"/devices"). Examples of possible values include unique information held by the device itself (e.g. MAC address, unique ID

of the device object, etc.), values assigned by the controller and values uniquely assigned in the server. In the example

above, the values are described as hexadecimal strings with a '0x' prefix, but arbitrary strings without '0x' are acceptable.

The "deviceType" must be a name corresponding to the class name of the device object. The class name to be mapped to

the ECHONET Lite device object is described in the "Device Specification Section" (separate document). In the "protocol",

the ECHONET Lite version number in "type" and the Appendix release number (EPC = 0x82) of the device object in

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

20 / 114
©2018-2022 ECHONET Consortium

"version" should be described as an ASCII character string. In the case of a device to be mapped to an ECHONET Lite

device object, the manufacturer code (EPC = 0x8A) property value of the device object superclass should be entered in

"code" and the name in Japanese ("ja") and English ("en") in "description". The property value of the property code (EPC

= 0x8A) should be entered in code. The handling of the Required column in Table 5-2 can be flexibly changed as described

in Section 7.4 if the device is independently extended.

The list of devices can be very large. If the server wishes to limit the number of devices to be returned to the client at one

time, it can return the following information: the existence of subsequent devices ("hasMore"), the number to be returned

at one time ("limit") and the offset position from the start ("offset").

{
 "devices": [
 :
],
 "hasMore": true,
 "limit": 25,
 "offset": 0
}

It can also support a query format where the offset position and number of returns are specified by the client.

GET /elapi/v1/devices?offset=0&limit=25 HTTP/1.1 |

5.7. Obtaining device information (device description)

By specifying "/elapi/v1/<service specification (can be omitted)>/devices/<device id>" and performing a

GET, the specification corresponding to the device can be obtained as a device description in JSON format. The device

description is a definition of the functions ("properties", "actions", "events") implemented by the device.

For devices mapped to ECHONET Lite device objects, the device description for each device (currently described for major

devices) is described in the "Device specification section" (separate document).

■ Request

GET /elapi/v1/devices/<device id> HTTP/1.1

■ Response

{
 "deviceType":<device type>,
 "eoj":<eoj in Hex string>,
 "descriptions": {
 "ja": <description of property in Japanese>,
 "en": <description of property in English>
 },
 "properties": { <property1>: <property object>, <property2>: <property object> ...

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

21 / 114
©2018-2022 ECHONET Consortium

 },
 "actions": ｛ <action1>: <action object>, <action2>: <action object>...
 },
 "events": { <event1>: <event object>, <event2>: <event object>...
 }
}

Table 5-3 Detailed response if obtaining device information

Property Type Required Description Example

deviceType string Yes

This shows device type. This is equivalent to

ECHONET Lite device object name (EOJ). For the

values, refer to "5. Device descriptions of each

device" in the "Device specification section"

(separate document).

"generalLighting"

eoj string No
ECHONET Lite EOJ class code in hex notation as

string (not used as ID)
"0x0130"

descriptions object Yes Device object name defined by ECHONET Lite ―

descriptions.ja string Yes Device object name of ECHONET Lite in Japanese "⼀般照明"

descriptions.en string Yes Device object name of ECHONET Lite in English
"General

Lighting"

properties object Yes

List of "property objects". Property 1 and Property 2

are property resource names (described in the

"Device specification section" (separate document)).

actions object No

List of "action objects".Action 1 and Action 2 are

action resource names (described in the "Device

specification section" (separate document)).

events object No
List of "event objects"."event1" and "event2" are

event resource names.

Property object

The property object describes the property definition of a device, corresponding to an ECHONET property that supports

GET or SET in ECHONET Lite. The GET method is used to obtaining a property in this Web API and the PUT method is used

to set it. The structure of the property object is shown below.

{
 "epc":<epc in Hex string>,
 "epcAtomic":<epc in Hex string>,
 "descriptions": {
 "ja": <description of property in Japanese>,
 "en": <description of property in English>
 },
 "writable":<writable flag>,

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

22 / 114
©2018-2022 ECHONET Consortium

 "observable":<observable flag>,
 "urlParameters": <schema of parameters>,
 "schema":<schema of data>,
 "note": {
 "ja":<note in Japanese>,
 "en":<note in English>
 }
}

Table 5-4 Details of property objects

Property Type Required Description Example

epc string No
Hex notation of the corresponding ECHONET

Lite EPC in string.
"0x80"

epcAtomic string No
An EPC that requires "Atomic operation" as

ECHONET Lite.
"0xCD"

descriptions object Yes
An ECHONET property name defined by

ECHONET Lite
―

descriptions.ja string Yes Property name of ECHONET Lite in Japanese "動作状態"

descriptions.en string Yes Property name of ECHONET Lite in English "Operation Status"

writable boolean Yes
This indicates whether writing is possible or

not. Corresponds to SET of ECHONET Lite.
true, false

observable boolean Yes

This indicates whether status changes can be

notified or not. Corresponds to INF of

ECHONET Lite.

true, false

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

23 / 114
©2018-2022 ECHONET Consortium

Property Type Required Description Example

urlParameters object No

Use query when it is necessary to pass

parameters in GET; describe parameter

information in JSON Schema format.

{

 "day":{

  "descriptions":{

   "ja": "xx",

   "en": "yy"

  },

  "schema": {

   "type":

"number",

   "minimum":

0,

   "maximum":

99

  },

  "required":

false

 }

}

schema object Yes
Describes property data information in JSON

Schema format.

{

  "type":"string",

  "format":"time"

}

note object No Additional information related to properties ―

note.ja string No Write additional information in Japanese
"秒の指定は無視され
る"

note.en string No Write additional information in English
"number of

seconds is ignored"

Action object

Action object describes a function provided by a device that is difficult to express in a property. As an example, SET-only

property operations, changes to internal state of devices without defining a property, atomic changes in multiple

properties, and time-consuming changes in device state (e.g., fading light over time). It is also possible to define "action" as

a pure function irrelevant to the internal state of the device (returns the arithmetic results as output only for the input

arguments). Although "action" does not exist in the ECHONET Lite device object definitions, it is possible to define it with

"action" instead of property; for example, define a function to reset the "cumulative amount of charging electric energy" to

0 by setting the "cumulative amount of charging electric energy resetting" property for the electric vehicle chargers. Use

POST method to execute "action" with this Web API. The following shows action object configurations.

{
 "epc": <epc in Hex string>,

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

24 / 114
©2018-2022 ECHONET Consortium

 "descriptions": {
 "ja": <description of action in Japanese>,
 "en": <description of action in English>
 },
 "input": {
 "type": "object",
 "properties": {
 <input arg1>: <schema of arg1>,
 <input arg2>: <schema of arg2>,
 …
 },
 "required": <array of required args>
 },
 "schema": <schema of data>,
 "note": {
 "ja": <description of action in Japanese>,
 "en": <description of action in English>
 }
}

Table 5-5 Details of Action Objects

Property Type Required Description Example

epc string No

The corresponding ECHONET Lite EPC is

expressed as a string in hex. Omitted if no

corresponding EPC exists.

"0xB3"

descriptions object No Name of "action". ―

descriptions.ja string No "action" name in Japanese "⼀括停⽌設定"

descriptions.en string No "action" name in English "All stop setting"

input object No Input parameter of "action" ―

input.type object No
Type of input parameters. Its type is

object fixed.
"object"

input.properties object No
List of "property objects" of input

parameters

{"mode": "sleep","speed":

"fast"}

input.required array No List of mandatory "property objects" ["mode"]

schema object No
Indicates output of "action". Leave empty

if no output is required
{}

note object No Additional information related to "action" ―

note.ja string No Write additional information in Japanese
"ECHONET LiteではSet

only property"

note.en string No Write additional information in English

"Access rule of the

corresponding ECHONET

Lite property is Set only"

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

25 / 114
©2018-2022 ECHONET Consortium

Event object

No specific examples are given for event objects in this edition of the guidelines. Additional descriptions are expected in

the next edition of the guidelines or later. 5.10 provides examples of other way to realize notification (using long polling or

webhook).

5.8. Property value operation of device objects (e.g. SET/GET)

ECHONET stipulates property operations as ESV (ECHONET Lite service). Mapping ECHONET property values on the server

and disclosing them as a resource to operate while linking ESV with the HTTP method (CRUD operation) enables "restful"

API operation. The following chapter discusses specific mapping and operations at the device object property level.

5.9. Handling client caches

In case that operating in-home devices from a client via server (performing status obtainment and control), some processes

may require a longer time to respond. Although an HTTP cache (RFC 9111) is not mandatory, client reuse of cached

resources is effective in cases where values are being obtained from a client to a server. The examples are shown as a

reference.

The following shows cases where effectively using HTTP caches for handling static data including manufacturer code

(basically inalterable for long-term or fixed information) and data not having been updated for a certain period after the

previous access (dynamic data). HTTP cache models include the "validation model" and "expiration model".

Validation Model

A model obtains only if data is updated.

Server: uses the last update date or entity tag as needed.

Last-Modified: True, 02 Jan 2018 00:00:00 GMT
ETag: "fa39b31e285573ee37af0d492aca581"

Client: if using a conditioned request with the last update date

GET /elapi/v1/devices/12345 HTTP/1.1
If-Modified-Since: True, 02 Jan 2018 00:00:00 GMT

Client: if using a conditioned request with entity tag

GET /elapi/v1/devices/12345 HTTP/1.1
If-None-Match: "fa39b31e285573ee37af0d492aca581"

Server: sends status code 304 (and empty body), if not changed, while sending 200 (and the detailed change), if

changed

Expiration Model

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

26 / 114
©2018-2022 ECHONET Consortium

A model obtains only if cache is expired

Server: Specify the expiration date and time or the number of seconds from the current time

Expires: Wed, 03 Jan 2018 00:00:00 GMT

Cache-Control: max-age=3600

The former indicates that clients can cache and use the data returned in the response until the specified deadline. The

latter designates elapsed seconds from the date header, since it is a non-real time case. If both are used, Cache-Control

takes precedence. The date and time format in the HTTP header (the three types described in HTTP data in RFC 9112

(HTTP1.1)) must be supported.

Client: Consider when to issue the next request with reference to the value of the response header above.

The above assume the effective use of caches. On the other hand, there are cases where no cache at all is used (is NOT

allowed to be used).

Cases where you don't want to cache (explicitly)

The Cache Control header can be used to request access from the client each time (instructing the client not to cache or

reuse).

Server: clearly indicate that a validation is required (asking server if it is valid or not even now, and not allowing

reuse unless it is confirmed).

Cache-Control: no-cache

Server: clearly indicate that caching is not allowed.

Cache-Control: no-store

5.10. Property value notification of device objects (INF)

The Web APIs covered in this guide basically assume normal, synchronous HTTP REST APIs that respond instantly to client

requests. Therefore, some ingenuity is required to use INF, which transmits information asynchronously to the timing of the

device side.

Handling INF

As the simplest case, a method that may be feasible is if receiving INF from the device at the server side, update the cache

using the values received, then detect the updates by regularly accessing them from a client (perform polling). For this

communication the "validation model" explained in 5.9 can be used. This method is very simple, but comes with some

problems. The first one is a constant delay in information transmission timing due to the limited timing of requests from

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

27 / 114
©2018-2022 ECHONET Consortium

the client. This occurs because the server cannot propagate its value to the client at the moment it receives the INF

asynchronously. The second is that the server must save a history for all properties potentially receiving INF, regardless of

the interest of the client in the value.

Therefore, to appropriately process the INF, it is ideal to support a push notification-type communication method that

sends messages from the server side to the client. There are some known methods to send push notifications from the

server.

W3C-related issues:

Push API (Web Push. Single-browser notification. Can be pushed from the server. Supports Android, but not

iOS)

Service Workers

Web Notification (single-browser notification. Supports Android, but not iOS)

Smartphone app-related issues (native Push):

APNS (Apple Push Notification Service)

GCM (Google Cloud Messaging), FCM (Firebase Cloud Messaging)

Others:

WebSocket

MQTT

Webhook

There is another method called long polling, that helps sustain a connection for a relatively long time while using a method

provided by REST. This section introduces realization cases using long polling, WebSocket, MQTT, and Webhook.

Example of realizing INF using long polling

Originally, access using HTTP REST is expected to immediately send a response once it receives a request. "Long polling" is

a technique for sustaining a connection between server and client by delaying a response for the period delayed. Given

this, the server can immediately send a message if any information is generated. This is a highly versatile method that can

be implemented by using normal HTTP access methods. However, doing this tends to have more simultaneous

connections with a server. Therefore, it is necessary to take measures and handle reconnection after disconnection.

Based on the method of obtaining property values using the GET method, which will be explained in detail in Chapter 6, it

is assumed that the timing of receiving the INF is obtained by a long polling. To distinguish this request from a normal GET,

the client requests a long polling to the server side by using other methods for INF, e.g. POST to get it. The server side

should be implemented so that no response is returned until the value is updated.

■ Request

POST /elapi/v1/devices/<device id>/properties/<Property resource name> HTTP/1.1

■ Response (not to respond until updated. The contents are the same as GET cases)

{
 <property resource name>:<data>
}

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

28 / 114
©2018-2022 ECHONET Consortium

or

■ In case where the response is an object

{
 <property resource name>: {
 <element name>: <data> ,
 <element name>: <data> ,
 ...
 }
}

Furthermore, it is desirable to allow the server to receive INF information from the device on reconnection, even if the

server receives INF information from the device before reconnecting after the connection is broken for some reason. This

can be achieved by adding an "If-Modified-Since" header to the request header, so that the server responds

immediately if there have been any changes since that time. This part is similar to the cached implementation described at

the beginning of this section in that the value must be recorded on the server side.

However, it is still superior to the simple cached implementation from two perspectives: (1) if assuming INF obtainment

using long polling, the time from the disconnection to reconnection would be insignificant, so there is less need to secure a

longer time to save history; and (2) there is no need to save property values not accessed with POST.

Example of realizing INF using WebSocket

If using a connection-based method including WebSocket, it is easier and more convenient to use Pub/Sub as connection

model. Pub/Sub uses a character string called "topic" for communication. By using resource names that have been

explained as the topic, extensions to INF can be implemented without significantly changing the basic concept of this Web

API.

In cases where the Pub/Sub model is supported at the protocol level (e.g. MQTT and WAMP), a server called broker or

router is often used that specialize in message delivery alone, but in Pub/Sub implemented on WebSockets, which is

described in this section, the server also acts as a broker, and communication takes place between the server and the client,

taking care of the continuity of REST.

Example of requests and responses (adopted "echonet" character string as a sub-protocol)

■ Request

GET /websocket HTTP/1.1
Host: example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: echonet
Sec-WebSocket-Version: 13

■ Response

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

29 / 114
©2018-2022 ECHONET Consortium

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: echonet

■(Client) subscription

{
 "method": "subscribe",
 "path": "/elapi/v1/devices/<device id>/properties/operationStatus"
}

■(Server) subscription Ack

{
 "method": "subscribeAck",
 "path": "/elapi/v1/devices/<device id>/properties/operationStatus"
}

■(Server) publication

{
 "method": "publish",
 "path": "/elapi/v1/devices/<device id>/properties/operationStatus",
 "value": false
}

■(Client) unsubscription

{
 "method": "unsubscribe",
 "path": "/elapi/v1/devices/<device id>/properties/operationStatus"
}

■(Server) unsubscription Ack

{
 "method": "unsubscribeAck",
 "path": "/elapi/v1/devices/<device id>/properties/operationStatus"
}

Example of realizing INF using MQTT

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

30 / 114
©2018-2022 ECHONET Consortium

MQTT is a lightweight protocol that implements the Pub/Sub model on top of TCP and has several features that are

suitable for IoT. We will not discuss the details here, but there is an important difference from the methods explained

earlier in this document. That is, the MQTT network configuration must have a broker in charge of message delivery other

than the client that generates/consumes messages. In this regard, having a separate broker is necessary to use the MQTT

to receive INF (to be explained in this section). Although both the server (explained earlier in this document) and the client

using the API are MQTT clients in terms of the MQTT broker, the server is a MQTT client (publisher) that only performs

"publishing", while the client is a MQTT client (subscriber) that only performs "subscribing".

The MQTT is a binary protocol directly implemented on the TCP not using HTTP. Therefore, it is not, strictly speaking, a

Web API. If using MQTT from the Web client (e.g. browser), it is necessary to use a broker that can perform "MQTT over

WebSocket" such as "AWS IoT" and "Mosquitto".

The concept is very simple: the Pub/Sub used in the WebSocket explained in the preceding section is simply implemented.

However, its sequence varies according to QoS, the parameters that control the percentage of guaranteed arrival of

messages, and the number of times messages are resent according to the parameter. The closest case to the

request/response example represented in the INF realization example by WebSocket is a case with QoS=1. The following

shows the sequence if realizing a similar thing with MQTT (as a binary protocol, the MQTT does not have a technique to

simply describe messages as a request line).

Client MQTT broker Server

sub

suback

publish

publish

puback

puback

publish

publish

puback

puback

unsubscribe

unsubscribeack

Client MQTT broker Server

Figure 5-1 Example of realizing INF using MQTT

As shown above, it is almost the same as WebSocket, unless the broker is used as an intermediary. The topic for

publish/subscribe should also be the path part shown in the WebSocket request and response example (the resource string

itself used in REST), and can be implemented with a value as payload if appropriate.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

31 / 114
©2018-2022 ECHONET Consortium

Example of realizing INF using Webhook

Webhook is a mechanism in which the server notifies the URL specified in advance by the client using the POST method.

First, check to see if the server supports Webhook. The response is information about the notification methods supported

by the server. The following examples are the cases where the server supports Webhook, but the notification settings

remain in the default state.

Request: check to see if the server supports Webhook

GET /elapi/v1/notifications HTTP/1.1

Response: the server supports Webhook, but "subscription" has not been configured

{
 "webhook": {
 "subscriptions": []
 }
}

To set up notifications, specify "subscribe" by "method", the property to be notified by "path", and the URL to be notified

by "callBackUrl". If authentication of the notification recipient is required, this information should also be described. The

following examples are for the cases where setting "apiKey" of the recipient. It is possible to issue other requests to set

different "callBackUrl", "apiKey", and the like for each "path". If the property specified by "path" has already been

subscribed, "callBackUrl" and "apiKey" should be overridden.

Request (setting property to be subscribed)

POST /elapi/v1/notifications HTTP/1.1

{
 "webhook": {
 "method": "subscribe",
 "path": "https://www.example.com/elapi/v1/devices/0123/properties/operationStatus",
 "callBackUrl": "https://sh-center.org/postreceive",
 "apiKey": {
 "key": "X-Webhook-key",
 "value": "0123ABC"
 }
 }
}

To cancel a notification by specifying a property, designate "unsubscribe" by "method".

Request (unsubscribing)

POST /elapi/v1/notifications HTTP/1.1

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

32 / 114
©2018-2022 ECHONET Consortium

{
 "webhook": {
 "method": "unsubscribe",
 "path": "https://www.example.com/elapi/v1/devices/0123/properties/operationStatus"
 }
}

The following shows an example of obtaining notification details if Webhook notification is configured. The properties

"operationStatus" and "operationMode" are notified to https://sh-center.org/postreceive, and it is revealed that the

property "faultStatus" is a setting for sending a notification to https://sh-center.org/faultStatus.

Request (confirmation of the properties requested notification)

GET /elapi/v1/notifications HTTP/1.1

Response

{
 "webhook": {
 "subscriptions": [
 {
 "path":
"https://www.example.com/elapi/v1/devices/0123/properties/operationStatus",
 "callBackUrl": "https://sh-center.org/postreceive",
 "apiKey": {
 "key": "X-Webhook-key",
 "value": "0123ABC"
 }
 },
 {
 "path":
"https://www.example.com/elapi/v1/devices/0123/properties/operationMode",
 "callBackUrl": "https://sh-center.org/postreceive",
 "apiKey": {
 "key": "X-Webhook-key",
 "value": "0123ABC"
 }
 },
 {
 "path":
"https://www.example.com/elapi/v1/devices/0123/properties/faultStatus",
 "callBackUrl": "https://sh-center.org/faultStatus",
 "apiKey": {
 "key": "X-Webhook-key",
 "value": "456XYZ"
 }
 }
]
 }
}

The expected data to be notified are as follows:

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

33 / 114
©2018-2022 ECHONET Consortium

POST https://sh-center.org/postreceive HTTP/1.1
X-Webhook-key: 0123ABC

{
 "path": "/elapi/v1/devices/0123/properties/operationStatus",
 "body": {
 "operationStatus": true
 }
}

To subscribe or unsubscribe multiple properties at once, use the bulks described in Chapter 7.

Next, another realization example is presented.

Assuming that registration/deregistration of URLs to be notified are done by some means (e.g., the procedure described in

the realization example above), the method of notifying INF by Webhook is described below.

The HTTP method, for example, uses the POST method. It also notifies that the request is a Webhook and the target

resource name. One way to notify resource names, for example, is to enter the resource name in the header field or body

of the request. If a resource name is set to the header field, the header name is, for example, "X-Elapi-notification".

The resource name described in the header field or body should be identifiable by the client, e.g. by using the resource

name specified by the client when registering the target property/URL. In the following cases, as an example of describing

a resource name in the body, a resource URL is described for the resource key. However, keys such as device ID and

property may also be established.

In case that a client receives INF from multiple servers, there may be cases where the resource names (device IDs) of

multiple servers overlap. Therefore, the client should: (1) specify different URLs for each server if registering target property

and URLs, or (2) be able to uniquely identify resources by writing an identifier that identifies the server in the header or

body of the HTTP request of the INF. The identifier that identifies the server is, for example, the host name or the contents

of the HOST header in the target property/URL registration. In the following example, it is assumed that the client specifies

a different URL for each server, and no identifier identifying the server is entered in the header and body of the INF HTTP

request.

Example of INF by Webhook (if resource names are written on the header field)

■ Request

POST <arbitrary URL registered by client> HTTP/1.1

X-Elapi-notification: /elapi/v1/devices/<device id>/properties/<Property resource name>
Content-Type: application/json

{
 <property resource name>: <data>
}

■ Response

Similar to the request

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

34 / 114
©2018-2022 ECHONET Consortium

Example of INF by Webhook (if resource names are entered on the body)

■ Request

POST <arbitrary URL registered by client> HTTP/1.1
Content-Type: application/json

{
 "events": [
 {
 "resource": <resource URL>,
 "value": <data>
 }
]
}

■ Response

Similar to the request

Example of general lighting (if resource names are written in the header field)

■ Request

POST <arbitrary URL registered by client> HTTP/1.1
X-Elapi-notification: /elapi/v1/devices/<device id>/properties/operationStatus
Content-Type: application/json

{
 "operationStatus": true
}

■ Response

Similar to the request

Example of general lighting (if resource names are entered on the body)

■ Request

POST <arbitrary URL registered by client> HTTP/1.1
Content-Type: application/json

{

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

35 / 114
©2018-2022 ECHONET Consortium

 "events": [
 {
 "resource": "/elapi/v1/devices/<device id>/properties/operationStatus",
 "value": true
 }
]
}

■ Response

Similar to the request

5.11. Authentication/authorization (introducing cases)

The number of cases requiring authentication would be significant, since they include cases with disconnected

communications if excessively accessing due to identifying API users and counting the number of calls.

The Web API guidelines introduce a mechanism of authentication/authorization as a reference case. The Web API

authentication/authorization methods include token authentication and Oauth2.0 authorization. However, the methods to

be adopted vary according to use cases.

The following shows two examples as typical cases using OpenID Connect and OAuth2.0: (1) if using this Web API from a

smartphone or other device (Authorization Code); and (2) if using between servers (Client Credentials).

Example of realizing Authorization Code

First, an example of an Authorization Code is presented.

In the figure, RP is the Relying Party and OP is the OpenID Provider (also called as Identity Provider (IdP)). The resource

server is a server that implements this Web API.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

36 / 114
©2018-2022 ECHONET Consortium

End user (browser) RP OP Resource server

Login

Redirect to OP

Authorization Request

End-User Authenticates and Consent

Redirect back to RP

Authorization Request with Authorization Code

Token Request

Token Response with Access Token and ID Token

Authentication Existing User

Request with Access Token

Response

End user (browser) RP OP Resource server

If the end user (browser) attempts to log into the RP, a redirect message from the RP to the OP is returned.

Example of responses from RP:

HTTP/1.1 302 Found
Location: https://server.example.com/authorize?
 response_type=code
 &scope=openid%20profile%20email
 &client_id=s6BhdRkqt3
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcallback

Mandatory except "state". The "scope" must include the openid, and if Authorization Code Flow is used, the

response_type is "code". Then, the end user (browser) sends an authorization request to the OP as described below.

Example of the authorization requests from end users:

GET /authorize?
 response_type=code
 &scope=openid%20profile%20email
 &client_id=s6BhdRkqt3
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcallback HTTP/1.1
Host: server.example.com

The OP verifies the authorization requests, and if eligible, attempts to authenticate the end user. Usually, a user interface

for authentication is displayed and authentication is performed by login (user name, password, and the like), and consent is

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

37 / 114
©2018-2022 ECHONET Consortium

obtained from the end user for sending information to the RP after authentication.

After obtaining consent, the OP returns a response including a redirect to the end user (browser).

Example of responses from OP:

HTTP/1.1 302 Found
Location: https://client.example.org/callback?
 code=SplxlOBeZQQYbYS6WxSbIA
 &state=af0ifjsldkj

The RP called by the end user (browser) via redirection issues a token request to the OP.

Example of requests from RP:

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcallback

The OP verifies the contents of the authorization code (code) and returns an access token, ID token, and the like as shown

below as long as it is a valid credential.

Example of responses from OP:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
 "access_token": "SlAV32hkKG",
 "token_type": "Bearer",
 "refresh_token": "8xLOxBtZp8",
 "expires_in": 3600,
 "id_token": "eyJhbGciO……"
}

The RP calls the Web API of the resource server, accompanied an access token in the header.

Example of requests of RP:

GET /elapi/v1/devices HTTP/1.1
Host: api.xxx.com
Authorization: Bearer SlAV32hkKG

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

38 / 114
©2018-2022 ECHONET Consortium

Example of realizing Client Credentials

Next, the Client Credentials case is presented.

In this case, the client usually targets a daemon service or website.

Client Authorization server Resource server

validate client credentials

Access token request with client id, client secret (and scope)

Access token response

Request with access token

Response

Client Authorization server Resource server

As an authorization server endpoint, for example, "/oauth2/token" is called using the POST method protected by TLS. The

request header contains attributes with the values of client_id and client_secret encoded in "base64" (HTTP Basic

authentication: RFC 7617).

Example of requests from the client:

POST /oauth2/token HTTP/1.1
Host: www.auth-server.com
Accept: application/json
Cache-Control: no-cache
Authorization: Basic eW91clfaWQ6eW91cl9jbG……
Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials&scope=xxxx

"eW91clfaWQ6eW91cl9jbG......" (second half is omitted) is a base64(<client_id>:<client_secret>) value. In the request

body, "client_credentials" is specified in "grant_type". Scope "xxxx" is the access level required to obtain an access

token which can be omitted.

The authorization server verifies client_id and client_secret, and returns an access token ("eyJraWQiOiJ......": omitted

the latter half), as long as it is a valid credential.

Example of authorization server responses:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

39 / 114
©2018-2022 ECHONET Consortium

{
 "access_token": "eyJraWQiOiJ……",
 "token_type": "Bearer",
 "expires_in": 3600
}

The client calls Web API of the resource server, accompanied by an access token in the header.

Example of requests from the client:

GET /elapi/v1/devices HTTP/1.1
Host: api.xxx.com
Authorization: Bearer eyJraWQiOiJ……

The resource server returns the requested data after succeeding verification of the access token. The access token can be

verified by querying "introspection" endpoint of the authorization server or by using a public key cached by the

authorization server beforehand.

6. Guidelines for mapping ECHONET Lite specifications

This chapter explains the guidelines for mapping ECHONET Lite frames and specifications of device objects.

6.1. Mapping ECHONET Lite frames

ECHONET Lite is a lower layer independent communication protocol. In general, UDP (mandatory) and TCP (optional) are

used for the transport layer if using IPv4 or IPv6, and ECHONET Lite frames (Table 6-1) are carried in the payload for

communication.

Table 6-1 Response of ECHONET Lite frames

Field Description Response with Web API

EHD ECHONET Lite header Not supported

TID Transaction ID Not supported

SEOJ Source ECHONET object Not supported

DEOJ Destination ECHONET object Identify with device object (instance) ID

ESV ECHONET Lite service To be discussed later

OPC Target property counters (OPC) Not supported

EPC ECHONET property To be discussed later

PDC Property data counter Not supported

EDT ECHONET property value data To be discussed later

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

40 / 114
©2018-2022 ECHONET Consortium

Table 6-1 describes the guidelines to be followed in this Web API for each of the fields that make up ECHONET Lite frames.

Conversion to the Web API is mainly achieved by mapping "DEOJ" (recipient device object), "ESV" (service type), "EPC"

(property), and "EDT" (property value data) to targets. "EHD", "TID", and "PDC" are matters that are only relevant between

in-home controllers and devices, not to be disclosed to the outside from the server. "TID" is used to manage

communications between the controller and the device, and could be treated as a part of session management between

the client and the server. However, there may be cases where the server side performs various forms of communication,

including retransmissions, to the controller and devices in response to requests from the client, and as this depends on the

server implementation, "TID" is outside the scope of mapping to this Web API.

6.2. Mapping DEOJ

Although there are two types of ECHONET Lite objects (node profile objects and device objects), this Web API guideline

only handles the device objects. This is because client-side applications that operate through Web API normally and mainly

operate device objects. There are some cases that require operations of node profile objects such as checking

communication units; however, they are outside the scope of this version’s guidelines. Controllers are treated as a type of

devices.

The following shows some examples of descriptions for designating multiple devices to be used for obtaining lists. For the

method used to designate multiple devices to be applied to the batch control, refer to "bulks" and "groups" in Chapter 7.

Designating all controllers:

In case that designating all controllers, following the method used if designating all specific models described later as

query parameters, the type is equal to controller (type=controller). Or, if a server supports a service type called a

"controller", "/elapi/v1/<service designation (can be omitted)>/controllers" can be designated.

Designating all devices:

If designating all devices (including all controllers). "/elapi/v1/<service designation (can be omitted)>/devices"

can be designated.

Designating all specific models:

If designating all specific models, it is acceptable to designate the model type such as "/elapi/v1/<service

designation (can be omitted)>/devices?type=homeAirConditioner".

Handling where the instance code is 0x00:

ECHONET Lite can designate all instances of the device objects by defining the instance code as 0x00 in relation to the

specific device objects on a specific node. However, there is no mapping to the Web API.

6.3. Mapping ESV

The ESV under ECHONET Lite is defined as shown in Table 6-2.

Table 6-2 Response with ESV

ESV Services descriptions Symbol Response with Web API

0x60 Property value write request (response not required) SetI PUT method (request)

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

41 / 114
©2018-2022 ECHONET Consortium

ESV Services descriptions Symbol Response with Web API

0x61 Property values write request (response required) SetC PUT method (request)

0x62 Property values read request Get GET method (request)

0x63 Property value notification request INF_REQ To be discussed later

0x6E Property value write/read request SetGet PUT method (request)

0x71 Property values write response Set_Res PUT method (response)

0x72 Property values read response Get_Res GET method (response)

0x73 Property values notification INF To be discussed later

0x74 Property value notification (response required) INFC To be discussed later

0x7A Property value notification response INFC_Res To be discussed later

0x7E Property value write/read response SetGet_Res PUT method (response)

0x50 Property value write response failed SetI_SNA PUT method (response)

0x51 Property value write response failed SetC_SNA PUT method (response)

0x52 Property value read response failed Get_SNA GET method (response)

0x53 Property value notification response failed INF_SNA To be discussed later

0x5E Property value write/read response failed SetGet_SNA PUT method (response)

Types of ESV can be classified roughly into request, response, and response failed. In case that mapping Set/Get operations

to the HTTP method, they can be corresponded to request and response/response failed (response successful/failed).

The Set-related ESV corresponds to update and control values, so it should be mapped to the PUT method. The three types

(SetI, SetC, and SetGet) are indistinguishable and their property values should be returned in the response using the PUT

method request and response. In addition, how to map the Ack return and timeout processes related to the response

latency of devices specified in the AIF certification specification is outside the scope of this version of the Guideline.

The Get-related ESV should be mapped to the GET method as it is used to retrieve and read values. The handling of data

cached on the server is described later.

With normal Web API, INF-related ESV is a pull-based so that it is difficult to receive real-time notifications. However, it is

realized by polling mimicry using the GET method or effectively using a push-based communication model such as

WebSocket, MQTT, Web Notification API, or Webhook.

6.4. Mapping EPC and EDT

EPC and EDT are defined by being linked with device object specifications. EPC is defined as resources in URI, and EDT is

communicated in request and response bodies. Specifically, properties that can be obtained are mapped to

"/elapi/v1/devices/<device id>/properties/<property resource name>" based on the device descriptions

described in 5.7. Property names are converted to property resource names, and those details are specified in the "Device

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

42 / 114
©2018-2022 ECHONET Consortium

specification section" (separate document). The properties to be set are handled by the property resource names under

"properties", if they can be obtained. If they cannot be obtained, they should be handled by separately defining

operation names under "actions".

The following sections explain this in more detail.

In addition, the prefix sections ("/elapi/v1") of the URI indicating the endpoints may be omitted hereafter, to simplify the

notation.

6.5. Mapping method and operation of ECHONET Lite device objects

Table 6-3 shows the basic API related to operation of device objects.

Table 6-3 API related to operation of device objects

http

method
path description

GET /devices/<device id>/properties
Batch acquiring of property values to be

obtained

GET
/devices/<device id>/properties/<property resource

name>?<query>
Acquiring designated property values

PUT
/devices/<device id>/properties/<property resource

name>
Setting designated property values

PATCH /devices/<device id>/properties Setting multiple property values to be set

POST /devices/<device id>/echoCommands Setting value of designated properties

ECHONET Lite defines two types of objects (Node Profile Objects and Device Objects), but this Web API guideline handles

only device objects as described above. The device object super class basically maps individual properties. However,

information that becomes apparent due to JSON conversion (e.g. property map) is omitted. For the mapping of super class

properties, see "Device specification section" (separate document).

The following indicates the basic policy for the various operation APIs for device objects.

GET /devices/<device id>/properties

By specifying "/elapi/v1/<service specification (optional)>/devices/<device id>/properties" and calling it

with the GET method, values can be returned for all properties that are subject to GET.

■ Request

GET /elapi/v1/devices/<device id>/properties HTTP/1.1

■ Response

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

43 / 114
©2018-2022 ECHONET Consortium

{
 <property resource name>: <property value>,
 <property resource name>: <property value>
 ...
}

Example of general lighting

■ Request

GET /elapi/v1/devices/<device id>/properties HTTP/1.1

■ Response

{
 "operationStatus": true,
 "faultStatus": false,
 "brightness": 50,
 "operationMode": "color",
 "rgb": {"r": 20, "g": 255, "b": 0 }
}

GET /devices/<device id>/properties/<property resource name>?<query>

By specifying "/elapi/v1/<service specification (optional)>/devices/<device id>/properties/<property

resource name> ? <query>" and calling it with the GET method, the specified property value can be returned. The

"query" is normally not mandatory. However, it is used for designating SET data if SET (EL) and GET (EL) "atomic

operations" are required for specific properties of some devices (such as smart electric meters). The "keys" are defined

for each property.

■ Request

GET /elapi/v1/devices/<device id>/properties/<property resource name>?<query> HTTP/1.1

■ Response

{
 <property resource name>: <data>
}

or

■ In case where the response is an object

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

44 / 114
©2018-2022 ECHONET Consortium

{
 <property resource name>: {
 <element name>: <data> ,
 <element name>: <data> ,
 ...
 }
}

Example of general lighting

■ Request

GET /elapi/v1/devices/<device id>/properties/operationMode HTTP/1.1

■ Response

{
 "operationMode": "color"
}

■ Request

GET /elapi/v1/devices/<device id>/properties/rgb HTTP/1.1

■ In case where the response is an object

{
 "rgb": {
 "r": 20,
 "g": 255,
 "b": 0
 }
}

■ If a request has a query

GET /elapi/v1/devices/<device id>/properties/normalDirectionIntegralElectricEnergyLog1?
day=0 HTTP/1.1

■ Response

{
 "normalDirectionIntegralElectricEnergyLog1": {

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

45 / 114
©2018-2022 ECHONET Consortium

 "day": 0,
 "energy": [
 20,
 34,
 59,
 109
]
 }
}

PUT /devices/<device id>/properties/<property resource name>

By specifying "/elapi/v1/<service specification (optional)>/devices/<device id>/properties/<property

resource name>" and calling it with the PUT method, the specified property value can be set. The server obtains the value

further obtained through GET operation after ECHONET Lite SET operation for the property corresponding to the property

resource of the target device via the controller. Then, the server returns it to the client.

■ Request

PUT /elapi/v1/devices/<device id>/properties/<property resource name> HTTP/1.1

{
 <property resource name>: <data>
}

■ If a request is an object

{
 <property resource name>: {
 <element name>: <data>,
 <element name>: <data>,
 ...
 }
}

■ Response

Similar to the request

Example of general lighting

■ Request

PUT /elapi/v1/devices/<device id>/properties/operationMode HTTP/1.1

{
 "operationMode": "color"
}

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

46 / 114
©2018-2022 ECHONET Consortium

■ Response

{
 "operationMode": "color"
}

■ If a request is an object

PUT /elapi/v1/devices/<device id>/properties/rgb HTTP/1.1

{
 "rgb": {
 "r": 20,
 "g": 255,
 "b": 0
 }
}

■ Response

{
 "rgb": {
 "r": 20,
 "g": 255,
 "b": 0
 }
}

The procedures stated above assume execution of operations based on the device descriptions targeting devices described

in the "Device specification section" (separate document). For more details, see the "Device specification section" (separate

document).

On the other hand, supplementary functions are introduced (optional, later described in 7.4) to enable EPC operation that

is outside the scope of this guideline in cases where no desired property definition exists in the device description

stipulated in the "Device specification section" (separate document), and if using vendor-specific manufacturer-dependent

codes.

PATCH /devices/<device id>/properties

In case that the server corresponds with RFC 5789 (PATCH Method for HTTP), specified multiple property values can be set

by performing "PATCH" by specifying "/elapi/v1/<service specification (can be omitted)>/devices/<device

id>/properties". Other properties not specified remain unchanged.

In case that the server can judge that the request contains a property cannot be set to request (e.g. the property value to

be set is out of range or the property resource name does not exist), it returns the 400-499 error as the HTTP response

status code. In this case, no request is sent from the server to the controller.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

47 / 114
©2018-2022 ECHONET Consortium

If the fact that the request contains a property that cannot be set to request becomes apparent during processing of

controller or device (e.g., the property cannot be updated due to an internal condition on the device side), the server

returns the 500-599 error as the HTTP response status code.

Error responses can be returned in the response body (JSON format) as needed (optional).

For properties that could not be set, the response is returned as a pair of error type and message (arbitrary string) along

with the property value specified in PATCH.

■ Request

PATCH /elapi/v1/devices/<device id>/properties HTTP/1.1

{
 <property resource name>: <property value>,
 <property resource name>: <property value>
 ...
}

■ Response

{
 <property resource name>: <propertyValue>, // Properties successfully changed after
PATCH
 <property resource name>: <propertyValue>,
 ... ,
 "errors": [<error object>, <error object>... // Properties unchanged after PATCH
(option)
]
}

■ error object

{
 <property resource name>: <property value>, // Property requested in PATCH
 "type": <error type>,
 "message": <error message>
}

Example of general lighting

■ Request (if the value is out of range or contains invalid properties)

PATCH /elapi/v1/devices/<device id>/properties HTTP/1.1

{
 "operationMode": "color", // Normal value
 "rgb": {
 "red": 20,

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

48 / 114
©2018-2022 ECHONET Consortium

 "green": 300, // Out of range value
 "blue": 0
 }
}

■ Response

HTTP/1.1 400 Bad Request

{
 "operationMode": "color", // Normal value (Error of 400-499, so the request will not be
sent)
 "errors": [// Abnormal value (returns the same property value as if PATCH was
requested)
 {
 "rgb": {
 "red": 20,
 "green": 300,
 "blue": 0
 },
 "type": "rangeError",
 "message": "’green’ value is out of range."
 }
]
}

■ Request (if some properties cannot be processed and a "response failed" response is returned from the device)

PATCH /elapi/v1/devices/<device id>/properties HTTP/1.1
{
 "operationMode": "color",
 "rgb": {
 "red": 20,
 "green": 128,
 "blue": 0
 }
}

■ Response

HTTP/1.1 500 Internal Server Error
{
 "operationMode": "color", // setting succeeded
 "errors": [// setting failed
 {
 "rgb": { // property values if response is a matter of implementation (this
example has the same property value as if requesting PATCH)
 "red": 20,
 "green": 128,
 "blue": 0
 },
 "type": "deviceError",

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

49 / 114
©2018-2022 ECHONET Consortium

 "message": "SetC_SNA"
 }
]
}

6.6. Action

To call an "action", perform the POST method on the URI containing the target action resource name. Actions are used in

situations such as device and service operations that are difficult to define as operations performed by defining property

resources.

POST /<device id>/actions/<action resource name>

■ Request

POST /elapi/v1/devices/<device id>/actions/<action resource name> HTTP/1.1

{
 <input arg1>: <data1>,
 <input arg2>: <data2>,
 ...
}

■ Response

HTTP/1.1 200 OK

<output data>

6.7. Processing errors

The HTTP stipulates status codes for responses as shown in Table 6-4. Considering above, the server must appropriately

return status codes and the like.

Table 6-4 HTTP status code

Status

Code
Name Meanings

100-199 Informational Processing is ongoing

200-299 Successful Successfully completed

300-399 Redirection Redirect request

400-499 Client Error Error caused by client

500-599 Server Error
Server-induced errors (including communication with in-home controllers and

devices)

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

50 / 114
©2018-2022 ECHONET Consortium

If more detailed error information can be returned, it is allowed to return appropriate status codes, while referring to Table

6-5 as a reference (optional).

Table 6-5 Use cases for HTTP status codes

Status

Code
Name Meanings (example)

200 OK The request has succeeded

201 Created The request has been fulfilled and resulted in a new resource being created

204 No Content
The server has fulfilled the request but does not need to return an entity-

body

301 Moved Permanently Resources are permanently moved

304 Not Modified Resource not updated

400 Bad Request Incorrect request or wrong data format

401 Unauthorized Authorization is required.

404 Not Found Resources (corresponding path or property) not found

405 Method Not Allowed Method designated as a resource not allowed

406 Not Acceptable Does not match "Accept header"

409 Conflict Resources conflict (e.g. conflicting ID)

415
Unsupported Media

Type
Data format is correct, but the server is not responding

500 Internal Server Error Error(s) occurred at the server side

503 Service Unavailable The server is temporary halted

In this guideline, ECHONET Lite Web API calls (if necessary) and error responses arising from services can be returned in a

response body (JSON format), and if the above-mentioned status codes are 4XX/5XX-related ones (optional).

As shown below, a pair of error type and message (any string) is returned.

{
 "type":<error type>,
 "message":<error message>
}

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

51 / 114
©2018-2022 ECHONET Consortium

Table 6-6 Error response of service level

Property Type Required Description Example

type string Yes

Indicates error types There are two cases for error types: a server

judges an incident as an error

(rangeError/referenceError/typeError/timeoutError) or a device

judges an incident as an error (deviceError)

"rangeError"

message string Yes Arbitrary string data to describe error details

Assumed types are as follows:

Table 6-7 Variation of error type

ErrorType Description Example

Caused by client - -

rangeError If value to be set is outside the scope of the specifications

number, integer: if values are not

between the min. and max.

enum: if no value exists

referenceError
If target device ID or property resource name does not

exist
-

typeError
If the type of the value to be set does not match the type

described in the device description.
-

Caused by server - -

timeoutError No response returned from device within a certain time Communication-related errors

deviceError
If the data received from device are values that

correspond with errors. If received SNA from a device
If received SetGet_SNA or Set_SNA

Ex.

{
 "type": "rangeError",
 "message": "data is out of range"
}
{
 "type": "rangeError",
 "message": "no value matches to the data"
}

{
 "type": "referenceError",
 "message": "device name is wrong"
}
{
 "type": "referenceError",
 "message": "property resource name is wrong"

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

52 / 114
©2018-2022 ECHONET Consortium

}
{
 "type": "typeError",
 "message": "data should be boolean"
}

{
 "type": "timeoutError",
 "message": "timeout !"
}

{
 "type": "deviceError",
 "message": "undefined"
}
{
 "type": "deviceError",
 "message": "GET_SNA"
}

6.8. Device information

Described in "Device specification section" (separate document).

7. Applied service functions

The specifications introduced so far have mainly focused on deployment models for mapping the basic functions that

ECHONET Lite protocol has to Web services. This chapter shows some examples of how to realize more convenient applied

services by combining basic functions, adding other information, and processing data. Note that the description of prefix

"/elapi/v1" in the paths representing resources are omitted hereafter.

7.1. Batch direction for multiple commands (bulks)

Servers generate and register command sets (bulk) listing multiple commands targeting arbitrary resources based on

requests from a client, thereby providing a function to direct and execute multiple commands at once (bulk execution) to

the client.

Figure 7-1 illustrates a series of actions related to bulk execution.

To perform bulk execution, (1) the client first requests the server to register a command set (bulk) listing multiple

target commands (consists of "method", "path", and ["body"] ("body" can be omitted)). The server registers the

bulk, and (2) returns "bulk ID", which serves as an identifier for the bulk to the client.

Next, (3) the client specifies the bulk ID to direct the "execute" action and the valid period of bulk execution starts

at the server, and (4) the server returns the execution ID to the client.

Thereafter, the server sends each command that constitutes the bulk to in-home/on-premise controllers (including

devices), ((5) and (7)) to obtain execution results.

Then, (9) the client specifies the execution ID to attempt to obtain a response from the server to execute the bulk

(the server responds at (10)). The client performs this operation multiple times, until the bulk execution is

completed, as needed.

Next, (11) after the last command execution is completed, bulk execution at the server is completed. Hereafter, (13)

in case that the client attempts to obtain a response to the bulk execution, the "processStatus" in the obtained

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

53 / 114
©2018-2022 ECHONET Consortium

response is a value indicating the end (14). However, if the client attempts to obtain the same response beyond the

valid period of the bulk execution stipulated by the server, an error is returned from the server.

The valid period of the bulk execution can be freely defined by the server. However, it is generally desirable to set a

sufficient period to complete the bulk execution and to allow the client to obtain results using the "getResults"

action.

Note that the bulk ID can be reused so that if the user wants to execute the bulk again, the procedure from (3)

onward can be repeated (by obtaining a new execution ID).

Eventually, if the registered bulk is no longer needed, the client deletes the bulk registered by server specifying the

bulk ID ((16) (17)).

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

54 / 114
©2018-2022 ECHONET Consortium

Client Server Controller

Creation/registration of bulk

Starting valid period of bulk execution

Starting bulk execution

Completion of bulk execution

Completion of bulk execution valid period

Deletion of bulk

POST /bulks (Creation/registration of bulk)
1

bulk ID
2

POST /bulks/{bulk id}/actions/execute (Direction to start bulk execution)
3

execution ID
4

Execution of each command
5

..
6

Execution of each command
7

..
8

POST /bulks/{bulk id}/actions/getResults (Obtaining bulk execution response)
9

Bulk execution response
10

Execution of each command
11

..
12

POST /bulks/{bulk id}/actions/getResults (Obtaining bulk execution response)
13

Bulk execution response
14

Time out
15

DELETE /bulks/{bulk id} (Deletion of bulk)
16

Response
17

Client Server Controller

Figure 7-1 Overview of bulk execution

In case that the server executes a command to in-home/on-premise controllers (including devices), the bulk process mode

("processMode") can designate either of two types (Figure 7-2). If concurrent mode is specified at the time of registering

the bulk in (1), the commands should be executed in the order specified in the array in the "requests" key (without

waiting for a response). If "sequential" mode is specified, the commands should be executed in the order specified in the

array in the "requests" key (while waiting for a normal response).

If "processMode" is not specified, it is executed in concurrent mode.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

55 / 114
©2018-2022 ECHONET Consortium

Server Controller

a) Execution of command

b) Execution of command

a) Response

c) Execution of command

b) Response

c) Response

Server Controller

Server Controller

a) Execution of command

a) Response

b) Execution of command

b) Response

c) Execution of command

c) Response

Server Controller

Figure 7-2 Concurrent mode (asynchronous) and sequential mode (synchronous)

The response details of the bulk execution in (10) allows for checking the status of the bulk execution from both individual

and overall perspectives.

The individual status can be checked for each command listed in the array in the "responses" key (in the order of the array

specified by the "requests" key), while the execution status of each command can be checked with the "progress" key.

The values can be any one of the following: "unexecuted" (not performed; default value), "executing" (in progress),

"completed" (successfully completed), "failed" (unsuccessfully completed), "timeout" (time is expired), or "aborted"

(suspended).

If "processMode" is "concurrent", all commands are executed unless the client explicitly instructs an "abort" action or the

processing time on the server side does not exceed the global timeout value (defined by the server).

Figure 7-3 provides an example of process in the "concurrent" mode. The figure illustrates that each command in the bulk

containing command a) through command e) is being executed sequentially; command a) is completed, b) is failed, c) is

timed out during execution, d) is executing, and e) is in an unexecuted state (the point in time when the client called is d); a

position while executing).

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

56 / 114
©2018-2022 ECHONET Consortium

Server Controller

a) "progress": "completed"

b) "progress": "failed"

c) "progress": "timeout"

d) "progress": "executing"

e) "progress": "unexecuted"

a) Execution of command

b) Execution of command

a) Response (success)

c) Execution of command

b) Response (fail)

c) No response (time out)

d) Executing

e) Unexecuted

Server Controller

Figure 7-3 Concurrent mode: executing until d)

If "processMode" is "sequential", all commands are executed unless the server execution of each command fails (failed or

timeout), the client explicitly instructs an "abort" action or the processing time on the server side does not exceed the

global timeout value (defined by the server). In other words, all commands are executed as long as a normal response

(succeeded) continues.

Figure 7-4 shows an example of process in "sequential" mode. The figure illustrates that each bulk command containing

command a) through command e) is being executed sequentially; command a) and b) are completed and c) and

subsequent commands are in an unexecuted state (the point in time when the client called is b); a position immediately

after).

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

57 / 114
©2018-2022 ECHONET Consortium

Server Controller

a) "progress": "completed"

b) "progress": "completed"

c) "progress": "unexecuted"

d) "progress": "unexecuted"

e) "progress": "unexecuted"

a) Execution of command

a) Response (success)

b) Execution of command

b) Response (success)

c) Unexecuted

d) Unexecuted

e) Unexecuted

Server Controller

Figure 7-4 Sequential mode: executing until b)

Subsequently, Figure 7-5 indicates that d) and e) have shifted from the unexecuted to the aborted state, since c) has failed.

Because c) has failed, no further commands are executed.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

58 / 114
©2018-2022 ECHONET Consortium

Server Controller

a) "progress": "completed"

b) "progress": "completed"

c) "progress": "failed"

d) "progress": "aborted"

e) "progress": "aborted"

a) Execution of command

a) Response (success)

b) Execution of command

b) Response (success)

c) Execution of command

b) Response (fail)

d) Aborted

e) Aborted

Server Controller

Figure 7-5 Sequential mode: c) stopped after execution

When an abort is sent from the client in any case of "processMode", the remaining execution process corresponding to the

specified execution ID on the server is aborted, and commands whose "progress" is "executing" or "unexecuted" are

moved to "aborted".

Since the valid period of the bulk execution lasts forever as long as it is not automatically deleted after a certain period of

time on the server (see explanation above), the client can obtain the status if aborted, using the getResults action

accompanied by the execution ID.

It is possible to understand the overall operation status by checking the "progress" of all commands listed in the

responses described in (10). However, if there are a large number of target commands, the status checking process to be

performed by the client becomes too complicated. A "processStatus" is provided so that a client can easily understand

the overall progress status related to bulk execution.

A "processStatus" can be any one of the following: "inProgress" (execution in progress), "succeeded" (all executions

are successfully completed), "failed" (executions are completed with one or more failures or timeouts), and "aborted" (at

least one execution is suspended; it is prioritized over "failed").

The values of "processStatus" according to the overall progress are as follows:

If all commands are unexecuted or one or more commands are in progress: "inProgress"

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

59 / 114
©2018-2022 ECHONET Consortium

In any one of the following cases: if the client aborts by issuing an "abort" action during the bulk execution, if it is

aborted beyond the timeout value of the entire server system, or if "failed" or "timeout" occurs in "processMode"

with "sequential" mode: "aborted"

If all command executions are completed:

If all executions succeeded → "succeeded"

If one or more executions failed or timed out → "failed"

It is assumed that the timeout values are set by the server in a timely manner. The execution timeout value " " (where is

from 1 to total) for each command and the execution timeout value T (bulk execution validity period) for all commands

need not necessarily be greater than the sum of the respective execution timeout values (), but should be set to a

period with a sufficient margin, as described above.

Table 7-1 lists the APIs related to bulk. The following explains the APIs individually.

Table 7-1 API for batch direction of multiple commands

http

method
path description

POST /bulks Creates a bulk

GET /bulks Returns a list of bulk IDs

GET /bulks/<bulk id> Returns a bulk description

GET /bulks/<bulk id>/properties
Returns all property resource values of the

bulk

GET
/bulks/<bulk id>/properties/<property resource

name>

Returns a property resource values of the

bulk

PUT
/bulks/<bulk id>/properties/<property resource

name>
Sets a property resource values of the bulk

POST /bulks/<bulk id>/actions/execute Starts a bulk execution

POST /bulks/<bulk id>/actions/abort Aborts a bulk execution

POST /bulks/<bulk id>/actions/getResults Returns bulk execution results

DELETE /bulks/<bulk id> Deletes a bulk

POST /bulks

Creates and registers a bulk, generates an identifier (bulk ID), and returns it to the client.

The client specifies the common URI part of the target resource (command) with "base" (optional), specifies the bulk

processing mode ("processMode"), enumerates commands (in the form of an array of "requests"), and makes a request to

the server.

"processMode" can be omitted, in which "concurrent" is used. Each command consists of sets which are listed in an array

in the "requests" key of the following: "method" (HTTP request method) , "path" (relative resource location from "base",

ti i

t∑i=1
n

i

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

60 / 114
©2018-2022 ECHONET Consortium

absolute resource position if "base" is not specified), ["body" (HTTP request body to be argument, can be omitted)]. If the

creation and registration of a bulk on the server is successfully completed, bulk ID is returned from the server to the client

as the HTTP status code 201 and HTTP body. In case that the maximum number of bulks that can be registered by the

server is exceeded, { "type": "rangeError", "message": "You can't create bulks over the registration

limit" }is returned as HTTP status code 400 and HTTP body.

■ Definition of request

{
 "descriptions": {
 "ja": <description in Japanese>,
 "en": <description in English>
 },
 "base": <base uri>,
 "processMode": "concurrent" | "sequential",
 "requests": [
 {
 "method": <http method>,
 "path": <path>,
 "body": <value>(optional)
 },
 ...
]
}

■ Definition of response

{
 "id": <bulk id>
}

■ Example of request

{
 "descriptions": {
 "ja": "帰宅",
 "en": "I'm home"
 },
 "base": "https://xxx.xxx/elapi/v1/",
 "processMode": "concurrent",
 "requests": [
 {
 "method": "GET",
 "path": "devices/0123/properties/operationStatus"
 },
 {
 "method": "PUT",
 "path": "devices/0124/properties/targetTemperature",
 "body": {
 "targetTemperature": 24
 }
 }

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

61 / 114
©2018-2022 ECHONET Consortium

]
}

■ Example of response

{
 "id": "00000011"
}

Request:

Property Type Required Description

descriptions object Yes Description related to the bulk to be registered

descriptions.ja string Yes Explanation of the content of the bulk to be registered

descriptions.en string Yes The content of a bulk to register in English

base string No Common base URI to the resource to be operated (can be omitted)

processMode string No

"concurrent" or "sequential". If omitted, the description will be

"concurrent" mode. The former performs parallel execution on the

command set to be registered in requests, while the latter performs

sequential execution. If performing parallel execution, each command

is executed sequentially in the order it is described. However, each

response is executed without waiting. If performing sequential

execution, the system waits for a normal response to a command and

then executes the next command.

requests array Yes List each command as an array

requests[].method string Yes HTTP request method

requests[].path string Yes

Path to the resource to be operated. If "base" is specified, the resource

is specified with a relative path, and if it is omitted, the resource is

specified with an absolute path (URI).

requests[].body object No Request body required during operation

Response:

Property Type Required Description

id string Yes bulk ID

GET /bulks

Returns a list of bulk IDs. The bulk IDs registered to the server are returned in an array format. If there is no registration, an

empty array will be returned.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

62 / 114
©2018-2022 ECHONET Consortium

■ Definition of response

{
 "registrationLimit": <maximum number of registered bulks>,
 "bulks": [
 {
 "id": <bulk id>,
 "descriptions": {
 "ja": <description in Japanese>,
 "en": <description in English>
 }
 },
 ...
]
}

■ Example of response

{
 "registrationLimit": 100,
 "bulks": [
 {
 "id": "00000011",
 "descriptions": {
 "ja": "帰宅",
 "en": "I'm home"
 }
 },
 {
 "id": "00000012",
 "descriptions": {
 "ja": "外出",
 "en": "I'm out"
 }
 }
]
}

Response:

Property Type Required Description

registrationLimit number No Maximum number of bulks that can be registered

bulks array Yes
Enumerates registered bulk IDs etc in an array.

Empty ("bulks": []) if there is no registration.

bulks[].id string No Bulk ID

bulks[].descriptions object No Description of registered bulk

bulks[].descriptions.ja string No Explanation of the content of the registered bulk

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

63 / 114
©2018-2022 ECHONET Consortium

Property Type Required Description

bulks[].descriptions.en string No The content of the registered bulk in English

GET /bulks/<bulk id>

Returns a bulk description specified with bulk ID.

■ Example of response

{
 "properties": {
 "descriptions": {
 "descriptions": {
 "ja": "bulkの説明",
 "en": "explanation of bulk."
 },
 "writable": true,
 "observable": false,
 "schema": {
 "type": "object",
 "properties": {
 "ja": {
 "type": "string"
 },
 "en": {
 "type": "string"
 }
 }
 }
 },
 "base": {
 "descriptions": {
 "ja": "ベースのURI",
 "en": "base URI"
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "string"
 }
 },
 "processMode": {
 "descriptions": {
 "ja": "処理モード",
 "en": "processing mode."
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "string",
 "enum": [
 "concurrent",
 "sequential"
]
 }
 },
 "requests": {

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

64 / 114
©2018-2022 ECHONET Consortium

 "descriptions": {
 "ja": "bulkの中の要求命令セット",
 "en": "set of request commands in a bulk."
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "method": {
 "type": "string",
 "enum": [
 "GET",
 "PUT",
 "POST",
 "PATCH",
 "DELETE"
]
 },
 "path": {
 "type": "string"
 },
 "body": {
 "oneOf": [
 {
 "type": "string"
 },
 {
 "type": "number"
 },
 {
 "type": "object"
 },
 {
 "type": "boolean"
 },
 {
 "type": "array",
 "items": {
 "oneOf": [
 {
 "type": "string"
 },
 {
 "type": "number"
 },
 {
 "type": "object"
 },
 {
 "type": "boolean"
 }
]
 }
 }
]
 }
 }

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

65 / 114
©2018-2022 ECHONET Consortium

 }
 }
 }
 },
 "actions": {
 "execute": {
 "descriptions": {
 "ja": "bulkを実⾏",
 "en": "execute a bulk."
 },
 "schema": {
 "type": "object",
 "properties": {
 "executionId": {
 "type": "string"
 }
 }
 }
 },
 "abort": {
 "descriptions": {
 "ja": "bulk実⾏中断",
 "en": "abort an execution of a bulk."
 },
 "input": {
 "type": "object",
 "properties": {
 "executionId": {
 "type": "string"
 }
 }
 },
 "schema": {
 "type": "object",
 "properties": {
 "executionId": {
 "type": "string"
 }
 }
 }
 },
 "getResults": {
 "descriptions": {
 "ja": "実⾏結果の取得",
 "en": "get results."
 },
 "input": {
 "type": "object",
 "properties": {
 "executionId": {
 "type": "string"
 }
 }
 },
 "schema": {
 "type": "object",
 "properties": {
 "base": {
 "type": "string"
 },

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

66 / 114
©2018-2022 ECHONET Consortium

 "total": {
 "type": "number",
 "minimum": 0
 },
 "processStatus": {
 "type": "string",
 "enum": [
 "succeeded",
 "failed",
 "inProgress",
 "aborted"
]
 },
 "responses": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "method": {
 "type": "string",
 "enum": [
 "GET",
 "PUT",
 "POST",
 "PATCH",
 "DELETE"
]
 },
 "path": {
 "type": "string"
 },
 "body": {
 "oneOf": [
 {
 "type": "string"
 },
 {
 "type": "number"
 },
 {
 "type": "object"
 },
 {
 "type": "boolean"
 },
 {
 "type": "array",
 "items": {
 "oneOf": [
 {
 "type": "string"
 },
 {
 "type": "number"
 },
 {
 "type": "object"
 },
 {
 "type": "boolean"

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

67 / 114
©2018-2022 ECHONET Consortium

 }
]
 }
 }
]
 },
 "progress": {
 "type": "string",
 "enum": [
 "unexecuted",
 "executing",
 "completed",
 "failed",
 "timeout",
 "aborted"
]
 },
 "statusCode": {
 "type": "number"
 }
 }
 }
 }
 }
 }
 }
 }
}

Response:

Property Type Required Description

properties object Yes ―

properties.descriptions object Yes Description of registered bulk

properties.descriptions.ja string Yes Explanation of the content of the registered bulk

properties.descriptions.en string Yes The content of the registered bulk in English

properties.base string No

Common base URI to the resource to be operated (if not

specified at the time of bulk generation, it should be

omitted)

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

68 / 114
©2018-2022 ECHONET Consortium

Property Type Required Description

properties.processMode string Yes

"concurrent" or "sequential". If not specified at the

time of bulk generation, it should be "concurrent"

mode. The former performs parallel execution on the

command set to be registered in requests, while the

latter performs sequential execution. If performing

parallel execution, each command is executed

sequentially in the order it is described. However, each

response is executed without waiting. If performing

sequential execution, the system waits for a normal

response to a command and then executes the next

command.

properties.requests array Yes List each command as an array

properties.requests[].method string Yes HTTP request method

properties.requests[].path string Yes

Path to the resource to be operated. Paths under "base".

Relative path if "base" is present, and if it is omitted,

absolute path (URI)

properties.requests[].body object No
Request body required during operation. This should be

omitted if "requests[].method" is GET

actions object Yes Description of action

actions.execute object Yes Command to start bulk execution

actions.abort object Yes Command to abort bulk execution

actions.getResults object Yes Obtaining bulk execution results

GET /bulks/<bulk id>/properties

Returns all property resource values of bulk specified by bulk ID.

■ Definition of response

{
 "descriptions": {
 "ja": <description in Japanese>,
 "en": <description in English>
 },
 "base": <base uri>,
 "processMode": "concurrent"|"sequential",
 "requests": [
 {
 "method": <http method>,
 "path": <path>,
 "body": <value>(optional)
 },

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

69 / 114
©2018-2022 ECHONET Consortium

 ...
]
}

■ Example of response

{
 "descriptions": {
 "ja": "帰宅",
 "en": "I'm home"
 },
 "base": "https://xxx.xxx/elapi/v1/",
 "processMode": "concurrent",
 "requests": [
 {
 "method": "GET",
 "path": "devices/0123/properties/operationStatus"
 },
 {
 "method": "PUT",
 "path": "devices/0124/properties/targetTemperature",
 "body": {
 "targetTemperature": 24
 }
 }
]
}

Response:

Property Type Required Description

descriptions object Yes Description of registered bulk

descriptions.ja string Yes Explanation of the content of the registered bulk

descriptions.en string Yes The content of the registered bulk in English

base string No
Common base URI to the resource to be operated (if not specified at

the time of bulk generation, it should be omitted)

processMode string Yes

"concurrent" or "sequential". If not specified at the time of bulk

generation, it should be "concurrent" mode. The former performs

parallel execution on the command set to be registered in requests,

while the latter performs sequential execution. In case that performing

parallel execution, each command is executed sequentially in the order

it is described. However, each response is executed without waiting. In

case that performing sequential execution, the system waits for a

normal response to a command and then executes the next command.

requests array Yes List each command as an array

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

70 / 114
©2018-2022 ECHONET Consortium

Property Type Required Description

requests[].method string Yes HTTP request method

requests[].path string Yes
Path to the resource to be operated. Paths under "base". Relative path

if "base" is present, and if it is omitted, absolute path (URI)

requests[].body object No
Request body required during operation. This should be omitted if not

required, e.g. "requests[].method" is GET

GET /bulks/<bulk id>/properties/<property resource name>

Returns a bulk property resource value of bulk specified by bulk ID

■ Example of request

GET /bulks/00000012/properties/processMode

■ Definition of response

{
 <property resource name>: <property value>
}

■ Example of response

{
 "processMode": "concurrent"
}

PUT /bulks/<bulk id>/properties/<property resource name>

Sets a bulk property resource value of bulk specified by bulk ID. The following example shows that the descriptions section

is rewritable.

■ Definitions of request and response

{
 <property resource name>: <property value>
}

■ Examples of request and response

{
 "descriptions": {{"ja": "就寝"}, {"en": "I'm going to sleep"}}

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

71 / 114
©2018-2022 ECHONET Consortium

}

POST /bulks/<bulk id>/actions/execute

Starts bulk execution. No body designation is required at the time of request. Bulk execution adopts the model in which the

execution results are obtained asynchronously, assuming it takes time for all requests to complete execution. Specifically,

the client directs the start of the bulk execution with "POST actions/execute" to obtain the execution ID, and then calls

"POST actions/getResults" by specifying this ID to obtain the results.

Since execution ID is a temporary ID, no means of retrieval or deletion is provided. The server can be implemented to

delete the ID after a certain period of time (the valid period of the execution ID depends on the server implementation).

The server accepts the next bulk execution if "processStatus" is complete, but returns an error if not.

■ Definition of response

{
 "executionId": <execution id>
}

■ Example of response

{
 "executionId": "0023"
}

Response:

Property Type Required Description

executionId string Yes Execution ID assigned when executed

POST /bulks/<bulk id>/actions/abort

Aborts a bulk execution. The body of the request specifies the execution ID to be suspended. If the bulk execution is

successfully aborted, the same execution ID is returned.

■ Definition of request

{
 "executionId": <execution id>
}

■ Example of request

{
 "executionId": "0023"

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

72 / 114
©2018-2022 ECHONET Consortium

}

■ Definition of response

{
 "executionId": <execution id>
}

■ Example of response

{
 "executionId": "0023"
}

Response:

Property Type Required Description

executionId string Yes Execution ID assigned when executed

POST /bulks/<bulk id>/actions/getResults

Returns the response of the bulk execution corresponding to the specified execution ID.

■ Definition of request

{
 "executionId": <execution id>
}

■ Example of request

{
 "executionId": "0023"
}

■ Definition of response:

{
 "base": <base uri>,
 "total": <total number of the requests>,
 "processStatus": <processing status of whole commands>,
 "responses": [
 {
 "method": <http method>,

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

73 / 114
©2018-2022 ECHONET Consortium

 "path": <path>,
 "body": <body data>,
 "progress": <progress state>,
 "status": <status code>
 },
 ...
]
}

■ Example of response:

{
 "base": "https://xxx.xxx/elapi/v1/",
 "total": 3,
 "processStatus": "inProgress",
 "responses": [
 {
 "method": "GET",
 "path": "devices/0123/properties/operationStatus",
 "body": {
 "operationStatus": true
 },
 "progress": "completed",
 "status": 200
 },
 {
 "method": "PUT",
 "path": "devices/0124/properties/targetTemperature",
 "body": {
 "type": "rangeError",
 "message": "..."
 },
 "progress": "failed",
 "status": 400
 },
 {
 "method": "GET",
 "path": "devices/0124/properties/roomTemperature",
 "progress": "unexecuted"
 }
]
}

Response:

Property Type Required Description

base string No

Common base URI to the resource to be operated (if

"base" is not specified at the time of bulk creation, it

is omitted)

total number Yes Total number of execution commands

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

74 / 114
©2018-2022 ECHONET Consortium

Property Type Required Description

processStatus string Yes

Overall progress: "inProgress" (in progress),

"succeeded" (all executions are successfully

completed), "failed" (executions are completed

with one or more failures or timeouts), and

"aborted" (at least one execution is suspended; it is

prioritized over "failed").

responses array Yes List responses to each command as an array

responses[].method string Yes HTTP request method

responses[].path string Yes

Path to the resource to be operated. Paths under

"base". Relative path if "base" is present, and if it is

omitted, absolute path (URI)

responses[].body object No

Response (response body) after successful execution

of operation. If an operation execution error is

issued: the error details are described in the object

format "error" and "message" (optional). If the

operation is not executed or is being executed, the

same contents as the request body is

returned. (if "requests[].method"

is "GET" and the operation is not

executed or is being executed,

"responses[].body" is omitted.)

responses[].progress string Yes

Execution status of operation: The value can be any

one of the following: "unexecuted" (operation is not

executed yet), "executing" (in progress),

"completed" (successfully completed after executing

operation), "failed" (unsuccessfully completed),

"timeout" (when timeout occurred), or "aborted"

(execution aborted).

responses[].status string No

Response after executing the operation (status code).

Omitted if the operation has not been executed or is

being executed.

DELETE /bulks/<bulk id>

Deletes a registered bulk. The bulk ID specifies the bulk ID to be deleted. The response body is not included and only the

HTTP status code 204 (No Content) is returned. If a bulk ID that has already been deleted or does not exist is specified, 404

(Not Found) will be returned.

7.2. Grouping devices (groups)

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

75 / 114
©2018-2022 ECHONET Consortium

The server provides the client with a function that enables the client to classify and organize resources and to execute

individual and common commands for a target group of devices (group operation function) by registering multiple devices

as a group based on a request from the client.

The server can create groups without a request from the client. For example, a server could register "group" in advance as

necessary in "the case where a product consists of multiple device objects" or "the case where multiple products are

grouped by the HEMS controller in the house". As a means of distinguishing groups registered by the server from groups

created by the client's request, the "preConfigured" property is defined..

Figure 7-6 illustrates a series of actions related to group operation.

For group operation, (1) the client first requests the server to register a device list that lists multiple devices to be

grouped (group). The server registers the group, and (2) returns "group ID" that serves as an identifier of the group

to the client.

Next, the client can select one of (3), (5), or (11) to perform the desired group operation.

In (3), the client can obtain all property resource values of the grouped devices specifying the returned group ID; in

(5), the client can obtain values of the specified property resources; and in (11), the client can set values of the

specified property resources.

Eventually, if the registered group is no longer needed, the client deletes the group registered on the server by

specifying the group ID ((17) (18)).

By default, when operating property resource operations such as (3), (5), or (11), the operation will be executed if the target

devices have the properties and the method is executable. If the target devices do not have the specified property or the

method is not supported, an error message is returned with HTTP status code 404 (Not Found) or 405 (Method Not

Allowed). Even if the property operation is executed, if the response time from the actual device exceeds the timeout value

specified by server, an error message ("type": "timeoutError") is returned with HTTP status code 500 (Internal Server

Error).

Depending on the characteristics of the group to be generated, the client may not want to require the return of 400-499 or

500-599 codes or error messages for error cases described above. For example, if a group combining one or more storage

battery classes with one or more household solar power generation classes is created to treat the group of devices as a

virtual composed device ("Virtual Composed Device"), an operation of a property common to the two classes is expected

to be executed on all devices and an operation of a property implemented by only one class is expected not to be

executed on the class (devices) that does not have the property. As an optional feature, a mechanism to enable such

processing is provided.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

76 / 114
©2018-2022 ECHONET Consortium

Client Server Controller

Creation/registration of group

Obtaining all property resources

Starting execution of Get commands

Completion of execution of Get commands

Starting execution of Set commands

Completion of execution of Set commands

Deletion of group

POST /groups (Creation/registration of group)
1

group ID
2

POST /groups/{group id}/actions/getAllProperties (Obtaining all property resources)
3

all property resources values
4

POST /groups/{group id}/actions/getProperty (Obtaining property resource value)
5

Execution of each command
6

...
7

Execution of each command
8

...
9

Property resource value
10

POST /groups/{group id}/actions/setProperty (Setting property resource value)
11

Execution of each command
12

...
13

Execution of each command
14

...
15

Property resource value
16

DELETE /groups/{group id} (Deletion of group)
17

Response
18

Client Server Controller

Figure 7-6 Overview of group execution

If a client wants to specify the devices supporting a class to be operated explicitly, the following designation format can be

used (optional).

Example: Operations targeting only devices supporting the general lighting class ("generalLighting") in a Virtual

Composed Device.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

77 / 114
©2018-2022 ECHONET Consortium

POST /groups/<group id>/actions/getProperty?deviceType=generalLighting

Functions to add and delete devices to be grouped after creating a group is provided.

Table 7-2 lists the API related to group. The following explains the APIs individually.

Table 7-2 API related to device grouping

http

method
path description

POST /groups Creates a group

GET /groups Returns a list of group IDs

GET /groups /<group id> Returns a group description

GET /groups /<group id>/properties Returns all property resource values of the group

GET
/groups/<group id>/properties/<property

resource name>
Returns a property resource value of the group

PUT
/groups/<group id>/properties/<property

resource name>
Sets a property resource value of the group

POST /groups /<group id>/actions/getAllProperties
Returns all property resource values of target devices

in the group

POST /groups /<group id>/actions/getProperty
Returns property values of target devices in the

group

POST /groups /<group id>/actions/setProperty Sets property values of target devices in the group

DELETE /groups /<group id> Deletes a group

POST /groups

Creates and registers a group that containing the target devices to be grouped, generates an identifier (group ID), and

returns it to the client. The client requests the server to create a group by specifying a list of device ID of target devices in

array format. If the maximum number of groups that can be registered by the server is exceeded, { "type":

"rangeError", "message": "You can't create group over the registration limit" }is returned as HTTP

body of HTTP status code 400 response.

Thereafter, by default, an operation can be performed on all devices in the group (the same applies if the "composed"

option is set to "false").

If Virtual Composed Devices are supported, specifying "true" to "composed" allows operations for the properties of the

target device group to be performed only on devices having properties and supporting methods. In this case, no response

is returned (no error code or error message will be returned) for devices that do not have properties or do not support

methods.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

78 / 114
©2018-2022 ECHONET Consortium

If a request is made to a server not supporting "composed" by specifying "true" to "composed", the group ID will not be

returned. Instead, an error message ("type": "typeError") is returned with HTTP status code 404 (Not Found).

■ Definition of request

{
 "descriptions": {
 "ja": <description in Japanese>,
 "en": <description in English>
 },
 "members": [
 {
 "deviceId": <device id>
 },
 ...
],
 "composed": <true/false>
}

■ Example of request

{
 "descriptions": {"ja": "リビング", "en": "living"},
 "members": [{"deviceId": "0123"}, {"deviceId": "1234"}, {"deviceId": "2345"}],
 "composed": true
}

■ Definition of response

{
 "id": <group id>
}

■ Example of response

{
 "id": "00000011"
}

Request:

Property Type Required Description

descriptions object Yes Description related to the group to be registered

descriptions.ja string Yes Explanation of the content of the group to be registered

descriptions.en string Yes The content of a group to register in English

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

79 / 114
©2018-2022 ECHONET Consortium

Property Type Required Description

members array Yes Target device group. List of device IDs in an array format.

members[].deviceId string Yes Device ID of the target device

composed boolean No
Whether or not Virtual Composed Devices are supported. If

omitted, it will be considered "false".

Response:

Property Type Required Description

id string Yes group ID

GET /groups

Returns a list of group IDs. The group IDs registered with the server are returned in an array format. If no group ID is

registered, an empty array will be returned.

■ Definition of response

{
 "registrationLimit": <maximum number of registered groups>,
 "groups": [
 {
 "id": <group id>,
 "descriptions": {
 "ja": <description in Japanese>,
 "en": <description in English>
 }
 },
 ...
]
}

■ Example of response

{
 "registrationLimit": 100,
 "groups": [
 {
 "id": "00000011",
 "descriptions": {
 "ja": "リビング",
 "en": "living"
 }
 },
 {
 "id": "00000012",
 "descriptions": {
 "ja": "寝室",
 "en": "bedroom"

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

80 / 114
©2018-2022 ECHONET Consortium

 }
 }
]
}

Response:

Property Type Required Description

registrationLimit number No Maximum number of groups that can be registered

groups array Yes

List of registered group IDs and related information in an

array. If no group ID is registered, this is empty ("groups":

[])

groups[].id string No group ID

groups[].descriptions object No *1 Description related to the registered group

groups[].descriptions.ja string No *1 Explanation of the content of the registered group

groups[].descriptions.en string No *1 The content of the registered group in English

*1) Required if groups[].id exists

GET /groups/<group id>

Returns a group description specified with group ID.

■ Example of response

{
 "properties": {
 "descriptions": {
 "descriptions": {
 "ja": "groupの説明",
 "en": "explanation of group."
 },
 "writable": true,
 "observable": false,
 "schema": {
 "type": "object",
 "properties": {
 "ja": {
 "type": "string"
 },
 "en": {
 "type": "string"
 }
 }
 }
 },
 "members": {
 "descriptions": {
 "ja": "groupに属する機器のdevice idのリスト",

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

81 / 114
©2018-2022 ECHONET Consortium

 "en": "list of device ids in this group."
 },
 "writable": true,
 "observable": false,
 "schema": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "deviceId": {
 "type": "string"
 }
 }
 }
 }
 },
 "composed": {
 "descriptions": {
 "ja": "仮想混合デバイスの設定",
 "en": "Setting of virtual compound device."
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "boolean"
 }
 },
 "preConfigured": {
 "descriptions": {
 "ja": "サーバ事前登録によるGroupか否か",
 "en": "Setting of server preconfigration."
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "boolean"
 }
 }
 },
 "actions": {
 "getAllProperties": {
 "descriptions": {
 "ja": "グループに存在する機器の全プロパティを読み出す",
 "en": "read all properties of all devices in this group."
 },
 "schema": {
 "type": "object",
 "properties": {
 "responses": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "deviceId": {
 "type": "string"
 },
 "properties": {
 "type": "object"
 }
 }

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

82 / 114
©2018-2022 ECHONET Consortium

 }
 }
 }
 }
 },
 "getProperty": {
 "descriptions": {
 "ja": "グループに存在する機器の指定プロパティ値の取得",
 "en": "read the specified property of all devices in this group."
 },
 "input": {
 "type": "object",
 "properties": {
 "propertyName": {
 "type": "string"
 }
 }
 },
 "schema": {
 "type": "object",
 "properties": {
 "responses": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "deviceId": {
 "type": "string"
 },
 "body": {
 "type": "object"
 },
 "statusCode": {
 "type": "number"
 }
 }
 }
 }
 }
 }
 },
 "setProperty": {
 "descriptions": {
 "ja": "グループに存在する機器の指定プロパティ値の設定",
 "en": "write the specified property of all devices in this group."
 },
 "input": {
 "type": "object",
 "properties": {
 "propertyName": {
 "type": "string"
 },
 "propertyValue": {
 "oneOf": [
 {
 "type": "string"
 },
 {
 "type": "number"
 },

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

83 / 114
©2018-2022 ECHONET Consortium

 {
 "type": "object"
 },
 {
 "type": "boolean"
 },
 {
 "type": "array",
 "items": {
 "oneOf": [
 {
 "type": "string"
 },
 {
 "type": "number"
 },
 {
 "type": "object"
 },
 {
 "type": "boolean"
 }
]
 }
 }
]
 }
 }
 },
 "schema": {
 "type": "object",
 "properties": {
 "responses": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "deviceId": {
 "type": "string"
 },
 "body": {
 "type": "object"
 },
 "statusCode": {
 "type": "number"
 }
 }
 }
 }
 }
 }
 }
 }
}

Response:

Property Type Required Description

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

84 / 114
©2018-2022 ECHONET Consortium

Property Type Required Description

properties object Yes ―

properties.descriptions object Yes Description related to the registered groups

properties.descriptions.ja string Yes Explanation of the content of the registered group

properties.descriptions.en string Yes The content of the registered group in English

properties.members array Yes Target device group

properties.members[].deviceId string Yes Device ID of the target device

properties.composed boolean No
This property indicates whether or not Virtual

Composed Devices are supported

properties.preConfigured boolean No

This property indicates whether the group is

registered in advance by the server (true) or the

group registered by the client (false). If "true", the

group cannot be deleted.

actions object Yes ―

actions.getAllProperties object Yes
This action gets all property resources of target

device groups

actions.getProperty object Yes
This action gets property resources of target device

groups

actions.setProperty object Yes
This action sets property resources of target device

groups

GET /groups/<group id>/properties

Returns all property resource values of group specified by the group ID

■ Definition of response

{
 "descriptions": {
 "ja": <description in Japanese>,
 "en": <description in English>
 },
 "members": [
 {
 "deviceId": <device id>
 },
 ...
],
 "composed": <true/false>,
 "preConfigured": <true/false>
}

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

85 / 114
©2018-2022 ECHONET Consortium

■ Example of response

{
 "descriptions": {"ja": "リビング", "en": "living"},
 "members": [{"deviceId": "0123"}, {"deviceId": "1234"}, {"deviceId": "2345"}],
 "composed": true,
 "preConfigured": false
}

Response:

Property Type Required Description

descriptions object Yes Description related to the registered groups

descriptions.ja string Yes Explanation of the content of the registered group

descriptions.en string Yes The content of the registered group in English

members array Yes List of device IDs of target devices in an array

members[].deviceId string Yes Device ID of the target device

composed boolean No
This property indicates whether Virtual Composed Devices are

supported or not

preConfigured boolean No
This property indicates whether the group is registered in advance

by the server or not

GET /groups/<group id>/properties/<property resource name>

Returns a group property resource value of group specified by the group ID

■ Example of request

GET /groups/00000013/properties/members

■ Definition of response

{
 <property resource name>: <property value>
}

■ Example of response

{
 "members": [{"deviceId": "0123"}, {"deviceId": "1234"}, {"deviceId": "2345"}]
}

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

86 / 114
©2018-2022 ECHONET Consortium

PUT /groups/<group id>/properties/<property resource name>

Sets a group property resource values of group specified by the group ID. The examples below show that target device

groups can be replaced or increased/decreased by updating the device list.

■ Definitions of request and response

{
 <property resource name>: <property value>
}

■ Examples of request and response

{
 "members": [{"deviceId": "1234"}, {"deviceId": "2345"}]
}

POST /groups/<group id>/actions/getAllProperties

Returns all property resource values of target devices held by the group specified by group ID. No body designation is

required at the time of request. The same results as those obtained by GET method specifying "<device

ID>/properties" for a device are returned in the value for the "properties" key.

■ Definition of response

{
 "responses": [
 {
 "deviceId": <device id>,
 "properties": {
 <property resource name 1>: <value 1>,
 <property resource name 2>: <value 2>,
 ...
 }
 },
 ...
]
}

■ Example of response

{
 "responses": [
 {
 "deviceId": "1234",
 "properties": {
 "operationStatus": true, ...

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

87 / 114
©2018-2022 ECHONET Consortium

 }
 },
 {
 "deviceId": "2345",
 "properties": {
 "operationStatus": true, ...
 }
 },
]
}

Response:

Property Type Required Description

responses array Yes Response

responses[].deviceId string Yes Device ID of the target device

responses[].properties object Yes All property resource values of target devices

POST /groups/<group id>/actions/getProperty

Returns property resource values of devices held by the group specified by the group ID. The same contents as those

obtained by GET method specifying "<device ID>/properties/<property resource name>" for a device are returned

in the value for the "body" key. At the same time, the HTTP status code is also returned. If an error occurs, the error value

and HTTP status code are returned.

If "composed" is supported (true), response will be returned only if the devices have the same property resource name and

support the GET method. In this case, no operation is executed and no response is returned for devices that do not have

the property or do not support GET method.

■ Definition of request

{
 "propertyName": <property resource name>
}

■ Example of request

{
 "propertyName": "operationStatus"
}

■ Definition of response

{
 "responses": [
 {

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

88 / 114
©2018-2022 ECHONET Consortium

 "deviceId": <device id>,
 "body": {<property resource name>: <value>
 },
 "status": <status code>
 },
 ...
]
}

■ Example of response

{
 "responses": [
 {
 "deviceId": "0123",
 "body": {
 "operationStatus": true
 },
 "status": 200
 },
 {
 "deviceId": "1234",
 "body": {
 "type": "timeoutError",
 "message": "the device does not respond"
 },
 "status": 500
 }
]
}

Response:

Property Type Required Description

responses array Yes Response

responses[].deviceId string Yes device ID

responses[].body object Yes

After successful execution of operation: response (response

body). If an execution error is issued: "type" (required),

"message" (required)

responses[].status number Yes Response after executing the operation (status code)

POST /groups/<group id>/actions/setProperty

Sets property resource values of the devices held by the group specified by the group ID. The same contents as those

obtained by PUT method specifying "<device ID>/properties/<property resource name>" for a device are returned

in the value for the "body" key. At the same time, the HTTP status code is also returned. If an error occurs, the error value

and HTTP status code are returned.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

89 / 114
©2018-2022 ECHONET Consortium

If "composed" is supported ("true"), response will be returned only if the devices have the same property resource name

and support the PUT method. In this case, no operation is executed and no response is returned for devices that do not

have the property or do not support PUT method.

■ Definition of request

{
 "propertyName": <property resource name>,
 "propertyValue": <property value>
}

■ Example of request

{
 "propertyName": "operationStatus",
 "propertyValue": true
}

■ Definition of response

{
 "responses": [
 {
 "deviceId": <device id>,
 "body": {<property resource name>: <value>
 },
 "status": <status code>
 },
 ...
]
}

■ Example of response

{
 "responses": [
 {
 "deviceId": "0123",
 "body": {
 "operationStatus": true
 },
 "status": 200
 },
 {
 "deviceId": "1234",
 "body": {
 "type": "timeoutError",
 "message": "the device does not respond"
 },

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

90 / 114
©2018-2022 ECHONET Consortium

 "status": 500
 }
]
}

Response:

Property Type Required Description

responses array Yes Response

responses[].deviceId string Yes device ID

responses[].body object Yes

After successful execution of operation: response (response body).

If an execution error is issued: "type" (required), "message"

(required)

responses[].status string Yes Response after executing the operation (status code)

DELETE /groups/<group id>

Deletes a registered group. The group ID specifies the group ID to be deleted. The response body is not included and only

the HTTP status code 204 (No Content) is returned. If a group ID that has already been deleted or does not exist is

specified, 404 (Not Found) will be returned.

7.3. Historical data (histories)

The server accumulates the obtained values for each resource of the target devices as historical data along with the

obtained time, and provides the required historical data to the client upon request from the client. Historical data consists

of pairs of obtained resource values and times. The server itself manages the historical data attributes (history), including

the devices that are the target of historical data storage, the timing and duration of historical data recording, and the like.

In this version, the server does not provide the client with any means to specify/register devices or resources for storing

historical data. The server only provides the client with a means to search historical data sets provided based on targets

devices and time periods specified/stored by the server independently. A historical data set is an entire set of historical

data that are stored on the server from time to time for a certain history ID.

Figure 7-7 illustrates a series of actions related to history operation.

To the server, the client can; (1) can request to acquire a list of history IDs, (2) among the listed history IDs obtained

from the server, (3) specify a specific history ID to obtain definition information (history description) of the history

data linked with the ID (4).

Then, (5) by specifying "properties" following the history ID on the path, the client can obtain all the resource

property values of the history linked with the ID from the server (6).

The client executes to the server, (7)the "prepareRetrieveData" action, specifying a history ID (including the

period and number of items as needed) to direct the start of preparation for returning a historical data subset

desired by client among the historical data sets provided by the server. If the preparation is completed, the server

returns to the client the total number of historical data items whose range has been determined and the number of

data items per response (page), in addition to the data ID linked with this action (8).

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

91 / 114
©2018-2022 ECHONET Consortium

Thereafter, (9) the client obtains the desired historical data subset from the server by specifying a data ID and page

number and executing a "retrieve" action (10).

If the total number of target historical data items is greater than the number per response, the historical data

subset is divided. In this case, (11) the subsequent historical data subset can be obtained by specifying the page

number after the second page (12); and (13) the final historical data subset can be obtained at the page number of

the last page ((total number of items)/(number of items per response)): rounded up to the nearest whole number).

The valid period of the historical data subset can be freely defined by the server. However, it is generally desirable

to set a sufficient period to allow the client to obtain results using the "retrieve" action.

Client Server

Determination of obtaining historical data subset

Release of historical data subset

GET /histories (Obtaining history ID list)
1

history ID list
2

GET /histories/{history id} (Obtaining history description)
3

history description
4

GET /histories/{history id}/properties (Obtaining all property resource values of history)
5

All property resource values of history
6

POST /histories/{history id}/actions/prepareRetrieveData (Preparation for obtaining historical data subset)
7

Data ID, total number of data, number of cases per response
8

POST /histories/{history id}/actions/retrieve (Obtaining historical data subset)
9

Historical data subset
10

POST /histories/{history id}/actions/retrieve (Obtaining historical data subset)
11

(Subsequent) Historical data subset
12

POST /histories/{history id}/actions/retrieve (Obtaining historical data subset)
13

(Final) Historical data subset
14

Timeout
15

Client Server

Figure 7-7 Overview of histories execution

Figure 7-8 explains the relationship between the historical data set specified by server and the historical data subset

specified by the client. The figure shows that recording began at 8:00 AM and is continuing to save historical data every 30

minutes, and the current time is around 11:45 AM. The historical data set is an aggregate of historical data from 8:00 to

11:30. In contrast, the aggregate of historical data from 9:00 to 10:00 is a historical data subset specified by the client.

Depending on the time period specified by the client, the historical data set and the historical data subset may become

identical.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

92 / 114
©2018-2022 ECHONET Consortium

first last
When starting

recording
The latest time

of recording

from
Specified

range
(start)

to
Specified

range
(completed)

Historical data
(recorded every 30 minutes)

9:00 10:00 now

T

Historical data set (specified by server)

Historical data
subset (specified

by client)

Figure 7-8 Relationship of historical data set and subset

Table 7-3 lists the APIs related to histories. The following explains the APIs individually.

Table 7-3 APIs for historical data

http

method
path description

GET /histories Returns a list of history IDs

GET /histories/<history id> Returns a history description

GET /histories/<history id>/properties
Returns all property resource values of the

history

GET
/histories/<history id>/properties/<property resource

name>

Returns a property resource value of the

history

POST /histories/<history id>/actions/prepareRetrieve
Prepares directions for retrieving history data

subset

POST /histories/<history id>/actions/retrieve Retrieves historical data subset

*) Note that the setting of property resource values of history is omitted because there are no property resources that can

be written in history.

GET /histories

Returns a list of history IDs. The history IDs registered with the server are returned in an array format. If no history ID is

registered, an empty array is returned.

■ Definition of response

{
 "histories": [
 {
 "id": <history id>,
 "descriptions": {
 "ja": <description in Japanese>,

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

93 / 114
©2018-2022 ECHONET Consortium

 "en": <description in English>
 }
 },
 ...
]
}

■ Example of response

{
 "histories": [
 {
 "id": "00000011",
 "descriptions": {
 "ja": "照明000023の動作状態履歴",
 "en": "Operation status history of light 000023"
 }
 },
 {
 "id": "00000012",
 "descriptions": {
 "ja": "太陽光発電（PV）000045の積算発電電⼒量計測値（kWh）",
 "en": "Cumulative amount of electric energy generated of PV 000045 ([kWh],
30min interval) "
 }
 }
]
}

Response:

Property Type Required Description

histories array Yes
List registered history IDs and the like in an array. If there

is no registration, empty ("histories": [])

histories[].id string No history ID

histories[].descriptions object No *1 Description related to the registered history

histories[].descriptions.ja string No *1
Explanation of the content of the registered history in

Japanese

histories[].descriptions.en string No *1
Explanation of the content of the registered history in

English

*1) Required if histories[].id exists

GET /histories/<history id>

Returns a history description specified with history id.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

94 / 114
©2018-2022 ECHONET Consortium

■ Example of response

{
 "properties": {
 "descriptions": {
 "descriptions": {
 "ja": "historyの説明",
 "en": "explanation of history."
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "object",
 "properties": {
 "ja": {
 "type": "string"
 },
 "en": {
 "type": "string"
 }
 }
 }
 },
 "deviceId": {
 "descriptions": {
 "ja": "履歴データ記録対象機器のdevice ID",
 "en": "device ID of the device for which data are recorded."
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "string"
 }
 },
 "deviceType": {
 "descriptions": {
 "ja": "履歴データ記録対象機器のdeviceType",
 "en": "deviceType of the device for which data are recorded."
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "string"
 }
 },
 "resourceType": {
 "descriptions": {
 "ja": "リソースタイプ(property, action, event)",
 "en": "resource type (property, action, event)"
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "string",
 "enum": [
 "property",
 "action",
 "event"
]

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

95 / 114
©2018-2022 ECHONET Consortium

 }
 },
 "resourceName": {
 "descriptions": {
 "ja": "リソース名",
 "en": "resource name"
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "string"
 }
 },
 "timing": {
 "descriptions": {
 "ja": "履歴データの取得タイミング",
 "en": "timing to record history data"
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "object",
 "properties": {
 "timingType": {
 "type": "string",
 "enum": [
 "onChange",
 "interval"
]
 },
 "intervalValue": {
 "type": "number"
 },
 "intervalUnit": {
 "type": "string",
 "enum": [
 "sec",
 "min",
 "hour",
 "day",
 "month",
 "year"
]
 }
 }
 }
 },
 "first": {
 "descriptions": {
 "ja": "最初の記録時刻",
 "en": "time of the first record"
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "string",
 "format": "date-time"
 }
 },
 "last": {

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

96 / 114
©2018-2022 ECHONET Consortium

 "descriptions": {
 "ja": "最後の記録時刻",
 "en": "time of the last record"
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "string",
 "format": "date-time"
 }
 },
 "total": {
 "descriptions": {
 "ja": "履歴データの総個数",
 "en": "total count of the history data"
 },
 "writable": false,
 "observable": false,
 "schema": {
 "type": "number",
 "minimum": 0,
 "multipleOf": 1
 }
 }
 },
 "actions": {
 "prepareRetrieveData": {
 "descriptions": {
 "ja": "取得⽤データの準備を指⽰する",
 "en": "Prepare data to retrieve."
 },
 "input": {
 "type": "object",
 "properties": {
 "from": {
 "type": "string",
 "format": "date-time"
 },
 "to": {
 "type": "string",
 "format": "date-time"
 },
 "count": {
 "type": "number",
 "minimum": 1,
 "multipleOf": 1
 },
 "desc": {
 "type": "boolean"
 }
 }
 },
 "schema": {
 "type": "object",
 "properties": {
 "dataId": {
 "type": "string"
 },
 "count": {
 "type": "number",

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

97 / 114
©2018-2022 ECHONET Consortium

 "minimum": 0,
 "multipleOf": 1
 },
 "countPerPage": {
 "type": "number",
 "minimum": 1,
 "multipleOf": 1
 }
 }
 }
 },
 "retrieve": {
 "descriptions": {
 "ja": "履歴データを取得する",
 "en": "retrieve histories data."
 },
 "input": {
 "type": "object",
 "properties": {
 "dataId": {
 "type": "string"
 },
 "page": {
 "type": "number",
 "minimum": 1,
 "multipleOf": 1
 }
 }
 },
 "schema": {
 "type": "object",
 "properties": {
 "processStatus": {
 "type": "string",
 "enum": [
 "succeeded",
 "failed",
 "inProgress"
]
 },
 "resourceType": {
 "type": "string",
 "enum": [
 "property",
 "action",
 "event"
]
 },
 "resourceName": {
 "type": "string"
 },
 "data": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "time": {
 "type": "string",
 "format": "date-time"
 },

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

98 / 114
©2018-2022 ECHONET Consortium

 "value": {
 "oneOf": [
 {
 "type": "string"
 },
 {
 "type": "number"
 },
 {
 "type": "object"
 },
 {
 "type": "boolean"
 },
 {
 "type": "array",
 "items": {
 "oneOf": [
 {
 "type": "string"
 },
 {
 "type": "number"
 },
 {
 "type": "object"
 },
 {
 "type": "boolean"
 }
]
 }
 }
]
 }
 }
 }
 }
 }
 }
 }
 }
}

Response:

Property Type Required Description

properties object Yes ―

properties.descriptions object Yes Description related to the registered history

properties.descriptions.ja string Yes
Explanation of the content of the registered history

in Japanese

properties.descriptions.en string Yes
Explanation of the content of the registered history

in English

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

99 / 114
©2018-2022 ECHONET Consortium

Property Type Required Description

properties.deviceId string Yes Device ID holding the resource for history

properties.deviceType string No Device type of the above

properties.resourceType string Yes

Type of resource for history. Currently supports

property resource "property" only (action resource

"action" and event resource "event" are planned to

be studied in the future)

properties.resourceName object Yes

Resource name for history. Resource name of the

historical data to be obtained, corresponding to the

type of the target resource for history.

properties.timing object Yes Timing for obtaining historical data

properties.timing.timingType string Yes
Type of timing for obtaining historical data. Either

"onChange" or "interval"

properties.timing.intervalValue number No
Time interval value. Required if the above

"timingType" is "interval"

properties.timing.intervalUnit string No

Time interval units.Any one of the following: "sec",

"min", "hour", "day", "month" or "year". Required if

the above "timingType" is "interval"

properties.first string Yes
Start time of obtaining historical data. RFC 3339

(ISO 8601) compliant

properties.last string Yes
Latest time of obtaining historical data. RFC 3339

(ISO 8601) compliant

properties.total number Yes Total number of historical data sets

actions object Yes ―

actions.prepareRetrieveData object Yes Preparation for obtaining historical data subset

actions.retrieve object Yes Obtaining historical data subset

GET /histories/<history id>/properties

Returns all property resource values of history specified by history ID. Each property includes target device (ID and type), its

resource target (type and name), timing to obtain historical data, and period to obtain. Either "onChange", which is

recorded at irregular intervals, or "interval", which is recorded at regular intervals, is used for the timing to obtain

historical data, and the data is returned. In the latter "interval" case, both the interval value and the time unit are

returned. The time at which the historical data started saving is returned as "first", while the time when the historical data

was last saved is returned as "last". The "last" and "total" may be updated as time elapses or with additional saving of

historical data.

■ Definition of response

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

100 / 114
©2018-2022 ECHONET Consortium

{
 "descriptions": {
 "ja": <description in Japanese>,
 "en": <description in English>
 },
 "deviceId": <device id>,
 "deviceType": <device type>,
 "resourceType": "property | action | event",
 "resourceName": <resource name>,
 "timing": {
 "timingType": "onChange"|"interval",
 "intervalValue": <value>,
 "intervalUnit": <time unit>
 },
 "first": <first time>,
 "last": <last time>,
 "total": <total count>
}

■ Example of response 1 (if "timingType" is "onChange")

{
 "descriptions": {
 "ja": "エアコンabc123の動作状態",
 "en": "operation status of air-conditioner abc123"
 },
 "deviceId": "abc123",
 "deviceType": "homeAirConditioner",
 "resourceType": "property",
 "resourceName": "operationStatus",
 "timing": {
 "timingType": "onChange"
 },
 "first": "2019-04-01T08:00:00+09:00",
 "last": "2019-04-24T22:00:00+09:00",
 "total": 1540
}

■ Example of response 2 (if "timingType" is "interval")

{
 "descriptions": {
 "ja": "エアコンabc123の室内温度",
 "en": "room temperature of the air-conditioner, abc123"
 },
 "deviceId": "abc123",
 "deviceType": "homeAirConditioner",
 "resourceType": "property",
 "resourceName": "roomTemperature",
 "timing": {
 "timingType": "interval",
 "intervalValue": 30,
 "intervalUnit": "min"

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

101 / 114
©2018-2022 ECHONET Consortium

 },
 "first": "2019-04-01T08:00:00+09:00",
 "last": "2019-04-24T22:00:00+09:00",
 "total": 1133
}

Response:

Property Type Required Description

descriptions object Yes Description related to the registered history

descriptions.ja string Yes Explanation of the content of the registered history in Japanese

descriptions.en string Yes Explanation of the content of the registered history in English

deviceId string Yes Device ID holding the resource for history

deviceType string No Device type of the above

resourceType string Yes

Type of resource for history. Currently supports property resource

"property" only (action resource "action" and event resource

"event" are planned to be studied in the future)

resourceName string Yes

Resource name for history. Resource name of the historical data

to be obtained, corresponding to the type of the target resource

for history.

timing object Yes Timing for obtaining historical data

timing.timingType string Yes
Type of timing for obtaining historical data. Either "onChange" or

"interval"

timing.intervalValue number No
Time interval value. Required if the above "timingType" is

"interval"

timing.intervalUnit string No

Time interval units. Any one of the following: "sec", "min",

"hour", "day", "month" or "year". Required if the above

"timingType" is "interval"

first string Yes
Start time of obtaining historical data. RFC 3339 (ISO 8601)

compliant

last string Yes
Latest time of obtaining historical data. RFC 3339 (ISO 8601)

compliant. It may be updated over time.

total number Yes
Total number of historical data items May be updated by

additional saving of historical data.

GET /histories/<history id>/properties/<property resource name>

Returns a history property resource value of history specified by history ID

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

102 / 114
©2018-2022 ECHONET Consortium

■ Example of request

GET /histories/00000014/properties/deviceId

■ Definition of response

{
 <property resource name>: <property value>
}

■ Example of response

{
 "deviceId": "abc123"
}

POST /histories/<history id>/actions/prepareRetrieveData

The client specifies the target period (start time "from", end time "to") of the desired historical data among the historical

data sets specified by the history ID, and requests the server to determine the historical data subset to be obtained (the

target period is optional). When the server is ready to return the historical data subset, it returns the data ID ("dataId"),

total number of data items ("count"), and number of data items per response ("countPerPage") to the client. If no request

body is specified, all historical data sets are targeted.

"from" and "to" are optional and can be specified in the following four ways: In the table, "✓" means if specified and "-"

means if not specified. In case that "from" or "to" is specified, either one is included in the historical data recorded at the

same time (the same applies to "first" and "last"). The historical data to be obtained will be returned in order from

oldest to newest, regardless of which designation is used. As described above, note that "last" may be updated over time,

so that it may be different from the value obtained from GET /histories/<history id>/properties.

Case from to Target scope

1 ✓ ✓ Values from "from" to "to"

2 ✓ − Values from "from" to "last"

3 − ✓ Values from "first" to "to"

4 − − Values from "first" to "last" (all historical data sets)

■ Definition of request

{
 "from": <time stamp>,
 "to": <time stamp>
}

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

103 / 114
©2018-2022 ECHONET Consortium

■ Definition of response

{
 "dataId": <data id>,
 "count": <count number>,
 "countPerPage": <count per page>
}

■ Example of request (designating search start time)

{
 "from": "2019-04-01T08:00:00+09:00"
}

■ Example of response

{
 "dataId": "0023",
 "count": 120,
 "countPerPage": 50
}

Request:

Property Type Required Description

from string No Search start time. RFC 3339 (ISO 8601) compliant

to string No Search end time. RF C3339 (ISO 8601) compliant

Response:

Property Type Required Description

dataId string Yes

Data ID for obtaining historical data subsets to be obtained. Assigned at

execution. This will be automatically deleted after a certain period of time

(specified by server) has elapsed.

count number Yes

Total number of historical data items in the target historical data subset to

be obtained. If "count" is specified at the time of request, the specified

number will become the upper limit.

countPerPage number Yes

Number of historical data items that can be returned per response. This is

the maximum number (in units) of historical data that the server can

respond to at one time.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

104 / 114
©2018-2022 ECHONET Consortium

POST /histories/<history id>/actions/retrieve

The client executes acquisition of the historical data subset specified by the data ID.

If the total number of historical data items in the historical data subset exceeds the number of historical data items that can

be returned per response, the historical data subset will be divided into multiple responses (pages). To obtain the historical

data subset from the client, a page number must be specified in addition to the data ID. However, the page number

designation may be omitted for the first page.

In the response, the status of process at the server ("processStatus") will be returned. Upon successful completion

("succeeded"), the resource type of the historical data (any one of "property", "action", or "event". However, currently

only the property resource "property" is supported), the resource name of the historical data, and the historical data

("data") will also be returned on a page-by-page basis. Historical data consists of acquisition time ("time") and acquisition

value ("value"). Obtained value can be of various data types depending on the resource type and resource name.

If a page number exceeding the last page is specified, the HTTP status code 404 (Not Found) will be returned.

The "processStatus" indicates the server process status of the historical data to be returned by this operation. For the

following cases, the HTTP status code 200 will be returned: when a response including historical data is returned,

"succeeded"; when preparing for server’s reasons, "inProgress"; when the server process fails/times out (the value is

specified by the server), "failed". Unlike the bulks case, "aborted" is not used because the abort direction function from

the client is not supported.

The data ID (and corresponding historical data subset) will be released after a certain period of time elapsed as stipulated

by the server.

■ Definition of request

{
 "dataId": <data id>,
 "page": <page number>
}

■ Example of request

{
 "dataId": "0023",
 "page": 2
}

■ Definition of response

{
 "processStatus": <process status in this history session operation>,
 "resourceType": "property",
 "resourceName": <resource name>,
 "data": [
 {

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

105 / 114
©2018-2022 ECHONET Consortium

 "time": <time stamp>,
 "value": <recorded resource value>
 },
 ...
]
}

■ Example of response (If succeeded)

{
 "processStatus": "succeeded",
 "resourceType": "property",
 "resourceName": "roomTemperature",
 "data": [
 {"time": "2019-04-01T08:xx:xx+09:00", "value": 18},
 {"time": "2019-04-01T08:xy:yy+09:00", "value": 19},
 {"time": "2019-04-01T08:zz:zz+09:00", "value": 21},
 ...
]
}

■ Example of response (waiting state during server processing)

{
 "processStatus": "inProgress"
}

■ Example of response (server process failure or timeout)

{
 "processStatus": "failed"
}

Request:

Property Type Required Description

dataId string Yes The data ID for obtaining historical data subset to be obtained

page number No Page number of the divided historical data subset. Page 1 can be omitted.

Response:

Property Type Required Description

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

106 / 114
©2018-2022 ECHONET Consortium

Property Type Required Description

processStatus string Yes

Overall progress: any one of "inProgress" (server in

progress), "succeeded" (server process is successfully

responded), "failed" (server processes are executed

with failure or timeout)

The following is only used if

processStatus is "succeeded":

"Required" is the standard at the time

of use.

resourceType string Yes

Resource type of historical data. Property resource

"property" ("action" and "event" are planned to be

studied in the future)

resourceName string Yes Resource name of historical data

data array Yes

List historical data in the target historical data subset

to be obtained as an array. If the total number of data

items is 0, empty ("data": [])

data[].time string No Time to be obtained. RFC 3339 (ISO 8601) compliant

data[].value object No
Obtained values. Omitted if data is missing ("time"

will not be omitted)

7.4. Guidelines for additional expansion of the device list

For response details if obtaining a device list, it is recommended not to change/delete the contents defined in "Table 5-2

Detailed response if obtaining device list". However, vendors may add elements independently. The name in such a case

should be prefixed with "vnd".

The contents defined in "Table 5-2 Detailed response if obtaining device list" should be handled as follows.

deviceType

It can be defined independently. However, it should be prefixed with "vnd". Although the devices are already defined in the

APPENDIX Detailed Requirements for ECHONET Device objects, if independently defining devices not defined in the

"Device specification section" (separate document), "vnd" should be used as the prefix.

If defining "deviceType", see also 7.5.1.

Ex.:

"vndLightingWithSensor"

protocol

It can be defined independently. However, type and version should be described.

Ex.:

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

107 / 114
©2018-2022 ECHONET Consortium

"type": "originalProto", "version": "v1.0"

manufacturer

"code": "" (empty string). Descriptions should be described by independent definitions.

7.5. Guidelines for expansion of device information (device description)

Regarding device information (Device Description) described in 5.7, it is recommended to use the device information

defined in the "Device specification section" (separate document) without changing the name. It is acceptable for each

device to delete properties/property values and actions that are not supported.

If adding new devices or adding new properties to existing device information, the device information may be expanded by

the vendor independently. For the purpose of avoiding duplication of names if the definition of the Device specification

section is expanded in the future, the following shows a summary of the guidelines for adding/expanding device

information by the vendor independently.

7.5.1. Adding new devices

It is acceptable to newly define devices not defined in the "Device specification section" (separate document), including

ECHONET Lite devices not defined in the "Device specification section" (separate document), virtual devices described in

4.4, and devices with specifications other than ECHONET Lite.

If adding a new device, prefix the deviceType name with "vnd". It is not necessary to prefix the names of properties and

actions with "vnd". If there is no definition corresponding to the APPENDIX Detailed Requirements for ECHONET Device

Objects, "eoj" and "epc" may be omitted.

7.5.2. Expansion for existing device information

If making changes to device information already defined in the "Device specification section" (separate document), under

any of the following three conditions, it is ideal to consider it as a vendor-specific expansion.

1. To add a property or action with a different function than an existing property or action. If adding a new property or

action to devices that have already been defined in the "Device specification section" (separate document), the

name of the property or action should be prefixed with "vnd". If there is no definition corresponding to the

APPENDIX Detailed Requirements for ECHONET Device Objects, "epc" may be omitted.

Ex.:

"vndYUV" (RGB for general lighting class)

2. If properties or actions are defined with the same name as an existing property or action, but the schema definition

has no common property values at all. However, if even one property value is duplicated, this condition should not

be applicable.

Ex.:

the type of an existing definition is "number" and the type of independent definition is "string"

The name of the property or action should be prefixed with "vnd", as in the 1.

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

108 / 114
©2018-2022 ECHONET Consortium

3. If adding an enumerator to the property value of an existing enumerated type (enum). If adding a new enumerator

to a property value of an enumerated type (enum) defined in the "Device specification section" (separate

document), "vnd" should be used as the prefix.

Ex:

adding an enumerator "vndExtremeCooling" to the "enum":["auto", "cooling", "heating"] of the

operation mode

For the details on the property object, it is recommended not to change the contents defined in "Table 5-4 Details of

property objects". However, vendors may add elements independently. The name in such a case should be prefixed with

"vnd".

Ex.:

vndOriginalProtoCode

The contents defined in "Table 5-4 Details of property objects" should be handled as follows.

epc

Can be omitted (Not required for devices other than ECHONET Lite devices)

epcAtomic

Can be omitted (Not required for devices other than ECHONET Lite devices)

descriptions

Described by independent definition.

urlParameters

Can be described by an independent definition. However, it should be described using the JSON Schema.

schema

Can be described by an independent definition. However, it should be described using the JSON Schema.

7.6. Guidelines for combined uses of defined devices

If combining multiple defined devices to use them as a single device, it is recommended to define them based on the

guidelines described below.

7.6.1. Guidelines for deviceType names

List the deviceType names of the defined devices in descending alphabetical order and then define them in lowerCamel. It

is recommended to use "_" as a separator in the "deviceType" name.

[Example definition]

If combining temperature sensor ("temperatureSensor") and CO2 sensor ("co2Sensor"):

"deviceType": "co2Sensor_temperatureSensor"

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

109 / 114
©2018-2022 ECHONET Consortium

7.6.2. Guidelines for property names

To avoid duplication of property names within the devices to be defined in combination, for necessary properties among

the device properties to be used in the combination, the property name should be prefixed with "deviceType" name.

[Example definition]

For the cases where deviceType: "temperatureSensor", property name: "value";

Property name: "temperatureSensorValue"

7.6.3. Guidelines for definition of Device Description

To clarify the devices whose properties are cited, it is recommended to describe EOJ of the device for each property. For

defined devices not having EOJ, deviceType can be described. The location of the description should be in the definition of

each property, and "key" should use "baseEoj" for EOJ, while "baseDeviceType" for "deviceType" (deviceType may be

listed alongside for devices having EOJ). The listing order of the properties is arbitrary, and only the property names should

be changed and described following to the guidelines shown in 7.6.2.

[Definition Example 1]

If all of the devices to be combined have EOJ

{
 "deviceType": "co2Sensor_temperatureSensor",
 "descriptions": {
 "ja": "CO2 温度センサ",
 "en": "CO2 Temperature sensor"
 },
 "properties": {
 "co2SensorValue": {
 "baseEoj": "0x001B",
 "baseDeviceType": "co2Sensor", // Can be omitted
 "epc": "0xE0",
 "descriptions": {
 "ja": "CO2濃度計測値",
 "en": "Measured value of CO2 concentration"
 },
 ...snip...
 },
 "temperatureSensorValue": {
 "baseEoj": "0x0011",
 "baseDeviceType": "temperatureSensor", // Can be omitted
 ...Omitted hereafter

[Definition Example 2]

If not all of the devices to be combined have EOJ

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

110 / 114
©2018-2022 ECHONET Consortium

{
 "deviceType": "co2Sensor_vndPm25Sensor",
 "descriptions": {
 "ja": "CO2 PM2.5センサ",
 "en": "CO2 PM2.5 sensor"
 },
 "properties": {
 "co2SensorValue": {
 "baseEoj": "0x001B",
 "baseDeviceType": "co2Sensor", // Can be omitted
 "epc": "0xE0",
 "descriptions": {
 "ja": "CO2濃度計測値",
 "en": "Measured value of CO2 concentration"
 },
 ...snip...
 },
 "vndPm25SensorValue": {
 "baseDeviceType": "vndPm25Sensor",
 ...Omitted hereafter

7.7. echoCommand

Some services using Web API may want to use the EOJ, ESV, EPC, and EDT values defined in ECHONET Lite. To respond to

such requests, the APIs shown in the table below are defined. A command using the values of EOJ, ESV, EPC, and EDT is

called "echoCommand".

http method path Description

GET /nodes Obtaining list of node profile information

POST /nodes/<node id> Sending echoCommand

GET /nodes

Obtains node profile information (identification number and instance list) for ECHONET Lite devices connected to the

home LAN as "id" and "instances".

■ Definition of response

{
 "nodes": [
 {
 "id":<node profile identification number>,
 "instances": [
 {
 "eoj":<device object EOJ>
 }
]
 },
 ...
]
}

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

111 / 114
©2018-2022 ECHONET Consortium

■ Example of response

{
 "nodes": [
 {
 "id": "FE...0001",
 "instances": [
 {
 "eoj": "0x013001"
 }
]
 },
 {
 "id": "FE...0002",
 "instances": [
 {
 "eoj": "0x026B01"
 },
 {
 "eoj": "0x028101"
 },
 {
 "eoj": "0x028201"
 }
]
 }
]
}

Response:

Property Type Required Description

node array Yes List of node profile information

nodes[].id string Yes Node profile identification number (EPC:0x83)

nodes[].instances array Yes Instance list

nodes[].instances[].eoj string Yes Device object EOJ

POST /nodes/<node id>

Specifies the "id" value obtained by "GET /nodes to <node id>", and sends echoCommand described in JSON data as

body data. The value of each element of echoCommand should be described by a character string in hexadecimal notation

(e.g., "0x80" and "0xA0"). OPC and PDC are not described because they can be calculated from the contents of

echoCommand. Since EDT is variable length data, the "edt" value should be described as an array whose elements are the

values of each byte of EDT (e.g., "0x123456" is ["0x12", "0x34", "0x56"]). "deoj" is required only for the body data of the

request. "seoj" is required only for the body data of the response.

■ Definition of request

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

112 / 114
©2018-2022 ECHONET Consortium

{
 "echoCommand": {
 "deoj":<DEOJ>,
 "esv":<ESV>,
 "operations": [
 {
 "epc":<EPC>,
 "edt": [<EDT DATA>
]
 }
 },
 ...
]
}

■ Definition of response

{
 "echoCommand": {
 "seoj":<SEOJ>,
 "esv":<ESV>,
 "operations": [
 {
 "epc":<EPC>,
 "edt": [<EDT DATA>
]
 }
 },
 ...
]
}

■ Example of request: obtaining operation status of air conditioner

{
 "echoCommand": {
 "deoj": "0x013001",
 "esv": "0x62",
 "operations": [
 {
 "epc": "0x80"
 }
]
 }
}

■ Example of response: obtaining operation status of air conditioners

{
 "echoCommand": {
 "seoj": "0x013001",

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

113 / 114
©2018-2022 ECHONET Consortium

 "esv": "0x72",
 "operations": [
 {
 "epc": "0x80",
 "edt": [
 "0x30"
]
 }
]
 }
}

■ Example of request: setting operation status of air conditioner to OFF

{
 "echoCommand": {
 "deoj": "0x013001",
 "esv": "0x61",
 "operations": [
 {
 "epc": "0x80",
 "edt": [
 "0x31"
]
 }
]
 }
}

■ Example of response: setting operation status of air conditioners to OFF

{
 "echoCommand": {
 "seoj": "0x013001",
 "esv": "0x71",
 "operations": [
 {
 "epc": "0x80"
 }
]
 }
}

Request:

Property Type Required Description

echoCommand object Yes echoCommand object

echoCommand.deoj string Yes DEOJ

echoCommand.esv string Yes ESV

ECHONET Lite Web API Guidelines
API Specifications

Date: Mar 27, 2022
Version 1.1.4

ECHONET Consortium

114 / 114
©2018-2022 ECHONET Consortium

Property Type Required Description

echoCommand.operations array Yes List of operations

echoCommand.operations[].epc string Yes EPC

echoCommand.operations[].edt array No EDT (not required if ESV=0x62)

echoCommand.operations[].edt[] string No EDT values per byte

Response:

Property Type Required Description

echoCommand object Yes echoCommand object

echoCommand.seoj string Yes SEOJ

echoCommand.esv string Yes ESV

echoCommand.operations array Yes List of operations

echoCommand.operations[].epc string Yes EPC

echoCommand.operations[].edt array Yes EDT

echoCommand.operations[].edt[] string Yes EDT values per byte

8. Conclusion

This document indicates various guidelines that need to be considered if designing Web API for formulating a system that

can be effectively used by an external client through particular services, which are mapping in-home ECHONET Lite models

on a server (e.g. cloud), and converting in-home ECHONET Lite devices to Web API. In addition to basic use cases such as

device operation described in the previous guideline, this document focuses on applied use cases (e.g., batch instructions

for multiple commands, device grouping, and historical data devices), to broaden the range of services that can be

provided as well as to provide more sophisticated services. In the future, while gradually increasing the types of devices

supported, further efforts will be made to improve applied use cases and to develop enhanced functionalities and

environments that are friendly to service operators.

9. Acknowledgments

To create this document, we received tremendous support in research and writing from Hiroyuki Fujita at the Kanagawa

Institute of Technology, who participated in our working groups. We deeply appreciate their efforts. We would also like to

express our sincere gratitude to everyone who participated in the discussions.

